[1] |
|
|
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China[J]. Journal of Agriculture, 2018, 8(1):107—114.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
|
[2] |
Griffey C A. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat[J]. Plant Disease, 1993, 77(6):618.doi: 10.1094/pd-77-0618.
|
[3] |
Li Y H, Wei Z Z, Sela H N, Govta L, Klymiuk V, Roychowdhury R, Chawla H S, Ens J, Wiebe K, Bocharova V, Ben-David R, Pawar P B, Zhang Y Q, Jaiwar S, Molnár I, Doležel J, Coaker G, Pozniak C J, Fahima T. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69[J]. Plant Communications, 2024, 5(1):100646.doi: 10.1016/j.xplc.2023.100646.
|
[4] |
Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat( Triticum aestivum L.):IX.cultivars,land races and breeding lines grown in China[J]. Plant Breeding, 1997, 116(3):233—238.doi: 10.1111/j.1439-0523.1997.tb00988.x.
|
[5] |
He H G, Zhu S Y, Jiang Z N, Ji Y Y, Wang F, Zhao R H, Bie T D. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat[J]. Theoretical and Applied Genetics, 2016, 129(4):819—829.doi: 10.1007/s00122-016-2668-4.
|
[6] |
Matsuoka Y. Evolution of polyploid triticum wheats under cultivation:the role of domestication,natural hybridization and allopolyploid speciation in their diversification[J]. Plant & Cell Physiology, 2011, 52(5):750—764.doi: 10.1093/pcp/pcr018.
|
[7] |
He H G, Liu R K, Ma P T, Du H N, Zhang H H, Wu Q H, Yang L J, Gong S J, Liu T L, Huo N X, Gu Y Q, Zhu S Y. Characterization of Pm68,a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796[J]. Theoretical and Applied Genetics, 2021, 134(1):53—62.doi: 10.1007/s00122-020-03681-2.
|
[8] |
Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat[J]. Euphytica, 1991, 53(1):57—60.doi: 10.1007/BF00032033.
|
[9] |
Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene:introgression from wild emmer into common wheat and RFLP-based mapping[J]. Euphytica, 2000, 115(2):121—126.doi: 10.1023/A:1003950431049.
|
[10] |
Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123(1):21—29.doi: 10.1023/A:1014471113511.
|
[11] |
Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat[J]. Theoretical and Applied Genetics, 2008, 117(1):135—142.doi: 10.1007/s00122-008-0760-0.
|
[12] |
Li G Q, Fang T L, Zhang H T, Xie C J, Li H J, Yang T, Nevo E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer( Triticum turgidum var. dicoccoides)[J]. Theoretical and Applied Genetics, 2009, 119(3):531—539.doi: 10.1007/s00122-009-1061-y.
|
[13] |
Hua W, Liu Z J, Zhu J, Xie C J, Yang T, Zhou Y L, Duan X Y, Sun Q X, Liu Z Y. Identification and genetic mapping of Pm42,a new recessive wheat powdery mildew resistance gene derived from wild emmer( Triticum turgidum var. dicoccoides)[J]. Theoretical and Applied Genetics, 2009, 119(2):223—230.doi: 10.1007/s00122-009-1031-4.
|
[14] |
Zhang D Y, Zhu K Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y. Wheat powdery mildew resistance gene Pm64 derived from wild emmer( Triticum turgidum var. dicoccoides)is tightly linked in repulsion with stripe rust resistance gene Yr5[J]. The Crop Journal, 2019, 7(6):761—770.doi: 10.1016/j.cj.2019.03.003.
|
[15] |
|
|
Qiao L Y. Mapping of resistance loci to powdery mildew and stripe rust in wheat cultivar CH7034[D]. Taiyuan:Shanxi University, 2018.
|
[16] |
盛宝钦, 段霞谕. 对记载小麦成株白粉病 “0-9级法” 的改进[J]. 北京农业科学, 1991(1):38—39.
|
|
Sheng B Q, Duan X Y. Improvement of "0-9 grade method" for recording wheat powdery mildew[J]. Beijing Agricultural Sciences, 1991(1):38—39.
|
[17] |
Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat( Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2004, 109(6):1105—1114.doi: 10.1007/s00122-004-1740-7.
pmid: 15490101
|
[18] |
Qiao L Y, Zhang X J, Li X, Zhang L, Zheng J, Chang Z J. Development of NBS-related microsatellite(NRM)markers in hexaploid wheat[J]. Euphytica, 2017, 213(11):256.doi: 10.1007/s10681-017-2039-5.
|
[19] |
|
|
Qiao L Y, Chang J Z, Guo H J, Gao J G, Zheng J, Chang Z J. Genome-wide analysis of TaNBS resistance genes and development of chromosome 2AL-specific NBS-SSR markers in wheat[J]. Acta Agronomica Sinica, 2016, 42(6):795—802.
|
[20] |
Wang B, Meng T, Xiao B, Yu T Y, Yue T Y, Jin Y L, Ma P T. Fighting wheat powdery mildew:from genes to fields[J]. Theoretical and Applied Genetics, 2023, 136(9):196.doi: 10.1007/s00122-023-04445-4.
pmid: 37606731
|
[21] |
李晓华, 郭慧娟, 畅志坚, 张晓军, 李欣, 乔麟轶, 高伟, 詹海仙. 小麦白粉病成株抗性研究现状[J]. 山西农业科学, 2017, 45(4):653—658,673.doi: 10.3969/j.issn.1002-2481.2017.04.40.
|
|
Li X H, Guo H J, Chang Z J, Zhang X J, Li X, Qiao L Y, Gao W, Zhan H X. Research status on adult-plant resistance to wheat powdery mildew[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(4):653—658,673.
|
[22] |
Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines[J]. Plant Disease, 2005, 89(5):457—463.doi: 10.1094/PD-89-0457.
pmid: 30795421
|
[23] |
|
|
Liu Z Y, Zhang H Z, Bai B, et al. Current status and strategies for utilization of stripe rust resistance genes in wheat breeding program of China[J]. Scientia Agricultura Sinica, 2024, 57(1):34—51.
doi: 10.3864/j.issn.0578-1752.2024.01.004
|
[24] |
|
|
Qiao L Y, Li R, Hao Y Q, Qiao L, Li X, Zhang X J, Chang Z J, Zheng X W. Construction of a genetic transformation system mediated by biolistic particle for winter wheat Linfen 5064[J]. Journal of Shanxi Agricultural Sciences, 2023, 51(12):1347—1352.
|
[25] |
Sánchez-Martín J, Widrig V, Herren G, Wicker T, Zbinden H, Gronnier J, Spörri L, Praz C R, Heuberger M, Kolodziej M C, Isaksson J, Steuernagel B, Karafiátová M, Doležel J, Zipfel C, Keller B. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins[J]. Nature Plants, 2021, 7(3):327—341.doi: 10.1038/s41477-021-00869-2.
pmid: 33707738
|
[26] |
Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50:a new powdery mildew resistance gene in common wheat derived from cultivated emmer[J]. Journal of Applied Genetics, 2013, 54(3):259—263.doi: 10.1007/s13353-013-0158-9.
|
[27] |
Zhu Z D, Kong X Y, Zhou R, Jia J Z. Identification and microsatellite markers of a resistance gene to powdery mildew in common wheat introgressed from Triticum durum[J]. Acta Botanica Sinica, 2004, 46(7):867—872.doi: 10.1016/j.molcel.2004.06.032.
|
[28] |
Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J]. Genome, 2005, 48(4):585—590.doi: 10.1139/g05-016.
|
[29] |
Yao D Y, Ijaz W, Liu Y, Hu J H, Peng W T, Zhang B W, Wen X L, Wang J, Qiu D, Li H J, Xiao S H, Sun G Z. Identification of a Pm4 allele as a powdery mildew resistance gene in wheat line Xiaomaomai[J]. International Journal of Molecular Sciences, 2022, 23(3):1194.doi: 10.3390/ijms23031194.
|
[30] |
Li G Q, Cowger C, Wang X W, Carver B F, Xu X Y. Characterization of Pm65,a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar[J]. Theoretical and Applied Genetics, 2019, 132(9):2625—2632.doi: 10.1007/s00122-019-03377-2.
|
[31] |
Niu J S, Jia H Y, Yin J, Wang B Q, Ma Z Q, Shen T M. Development of an STS marker linked to powdery mildew resistance genes PmLK906 and Pm4a by gene chip hybridization[J]. Agricultural Sciences in China, 2010, 9(3): 331—336.doi: 10.1016/s1671-2927(09)60101-2.
|
[32] |
胡铁柱, 李洪杰, 刘子记, 解超杰, 周益林, 段霞瑜, 贾旭, 尤明山, 杨作民, 孙其信, 刘志勇. 普通小麦品种豫麦66抗白粉病基因的鉴定与分子标记[J]. 作物学报, 2008, 34(4):545—550.doi: 10.3321/j.issn:0496-3490.2008.04.002.
|
|
Hu T Z, Li H J, Liu Z J, Xie C J, Zhou Y L, Duan X Y, Jia X, You M S, Yang Z M, Sun Q X, Liu Z Y. Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66[J]. Acta Agronomica Sinica, 2008, 34(4):545—550.
|
[33] |
Yi Y, Li R F, Xu H X, Wu X Q, Li S P, Zhang J, Yin Y. Identification of SRAP and RGA markers linked to powdery mildew(Blumeria graminis)resistance gene PmZB90 in common wheat[J]. Australian Journal of Crop Science, 2013, 7(3):454—459.
|
[34] |
Xu W G, Li C X, Hu L, Wang H W, Dong H B, Zhang J Z, Zan X C. Identification and molecular mapping of PmHNK54:a novel powdery mildew resistance gene in common wheat[J]. Plant Breeding, 2011, 130(6):603—607.doi: 10.1111/j.1439-0523.2011.01882.x.
|
[35] |
Fu B S, Chen Y, Li N, Ma H Q, Kong Z X, Zhang L X, Jia H Y, Ma Z Q. PmX:a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat Landrace Xiaohongpi[J]. Theoretical and Applied Genetics, 2013, 126(4):913—921.doi: 10.1007/s00122-012-2025-1.
|
[36] |
Olivera P D, Bulbula W D, Badebo A, Bockelman H E, Edae E A, Jin Y. Field resistance to wheat stem rust in durum wheat accessions deposited at the USDA national small grains collection[J]. Crop Science, 2021, 61(4):2565—2578.doi: 10.1002/csc2.20466.
pmid: 34413535
|
[37] |
|
|
Qiao L Y, Chang Z J, Zhang X J, Liu J, Zhu Y, Zhan H X, Guo H J, Li X. Genome-wide analysis and marker development of NBS-SSR in Triticum urartu[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2017, 37(3):153—157.
|