[1] |
Motoyama M, Sasaki K, Watanabe A. Wagyu and the factors contributing to its beef quality:a Japanese industry overview[J]. Meat Science, 2016, 120:10-18.doi: 10.1016/j.meatsci.2016.04.026.
pmid: 27298198
|
[2] |
Poleti M D, Regitano L C A, Souza G H M F, Cesar A S M, Simas R C, Silva-Vignato B, Oliveira G B, Andrade S C S, Cameron L C, Coutinho L L. Data from proteomic analysis of bovine longissimus dorsi muscle associated with intramuscular fat content[J]. Data in Brief, 2018, 19:1314-1317.doi: 10.1016/j.dib.2018.06.004.
pmid: 30229007
|
[3] |
Killinger K M, Calkins C R, Umberger W J, Feuz D M, Eskridge K M. Consumer sensory acceptance and value for beef steaks of similar tenderness,but differing in marbling level[J]. Journal of Animal Science, 2004, 82(11):3294-3301.doi: 10.2527/2004.82113294x.
pmid: 15542476
|
[4] |
Tyra M, Ropka-Molik K, Terman A, Piórkowska K, Oczkowicz M, Bereta A. Association between subcutaneous and intramuscular fat content in porcine ham and loin depending on age,breed and FABP3 and LEPR genes transcript abundance[J]. Molecular Biology Reports, 2013, 40(3):2301-2308.doi: 10.1007/s11033-012-2311-7.
pmid: 23192618
|
[5] |
Chen X Y, Raza S H A, Ma X H, Wang J F, Wang X H, Liang C C, Yang X R, Mei C G, Suhail S M, Zan L S. Bovine pre-adipocyte adipogenesis is regulated by bta-miR-150 through mTOR signaling[J]. Frontiers in Genetics, 2021, 12:636550.doi: 10.3389/fgene.2021.636550.
|
[6] |
Luo M, Wang L, Xiao C, Zhou M S, Li M H, Li H J. miR136 regulates proliferation and differentiation of small tail Han sheep preadipocytes[J]. Adipocyte, 2023, 12(1):2173966.doi: 10.1080/21623945.2023.2173966.
|
[7] |
Wang H, Ma M, Li Y Y, Liu J X, Sun C, Liu S N, Ma Y R, Yan Y, Tang Z L, Shen S Y, Yu J, Wu Y T, Jiang J J, Wang L, Jin Z B, Ying H, Li Y. miR-183 and miR-96 orchestrate both glucose and fat utilization in skeletal muscle[J]. EMBO Reports, 2021, 22(9):e52247.doi: 10.15252/embr.202052247.
|
[8] |
Zhang J S, Xu H Y, Fang J C, Yin B Z, Wang B B, Pang Z, Xia G J. Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle[J]. Animal Genetics, 2021, 52(5):598-607.doi: 10.1111/age.13126.
pmid: 34350996
|
[9] |
Wang W W, Li X X, Ding N, Teng J, Zhang S, Zhang Q, Tang H. miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4[J]. BMC Genetics, 2020, 21(1):33.doi: 10.1186/s12863-020-0836-7.
pmid: 32171241
|
[10] |
Wu W J, Liu K K, You Z Y, Zhang J. miR-196b-3p and miR-450b-3p are key regulators of adipogenesis in porcine intramuscular and subcutaneous adipocytes[J]. BMC Genomics, 2023, 24(1):360.doi: 10.1186/s12864-023-09477-0.
pmid: 37369998
|
[11] |
Kubota C S, Espenshade P J. Targeting stearoyl-CoA desaturase in solid tumors[J]. Cancer Research, 2022, 82(9):1682-1688.doi: 10.1158/0008-5472.CAN-21-4044.
|
[12] |
ALJohani A M, Syed D N, Ntambi J M. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism[J]. Trends in Endocrinology and Metabolism, 2017, 28(12):831-842.doi: 10.1016/j.tem.2017.10.003.
pmid: 29089222
|
[13] |
Yokota S, Sugita H, Ardiyanti A, Shoji N, Nakajima H, Hosono M, Otomo Y, Suda Y, Katoh K, Suzuki K. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle[J]. Animal Genetics, 2012, 43(6):790—792.doi: 10.1111/j.1365-2052.2012.02331.x.
pmid: 22497525
|
[14] |
Alwiyah A, Naraini H, Agung P P, Jakaria J. Polymorphism stearoyl-coa desaturase(scd)gene and associaton with characteristics meat in Bali cattle[J]. Journal of the Indonesian Tropical Animal Agriculture, 2016, 41(4):188.doi: 10.14710/jitaa.41.4.188-195.
|
[15] |
Xu X H, Ding Y, Yao J, Wei Z P, Jin H P, Chen C, Feng J, Ying R B. MiR-215 inhibits colorectal cancer cell migration and invasion via targeting stearoyl-CoA desaturase[J]. Computational and Mathematical Methods in Medicine, 2020, 2020:5807836.doi: 10.1155/2020/5807836.
|
[16] |
Lee E, He F, Choi B H, Dai W. Expression of IDO1 is regulated via Ras signaling pathways[J]. The FASEB Journal, 2022, 36(S1).doi: 10.1096/fasebj.2022.36.s1.l7486.
|
[17] |
Sadeghi Shaker M, Rokni M, Mahmoudi M, Farhadi E. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases[J]. Frontiers in Immunology, 2023, 14:1151246.doi: 10.3389/fimmu.2023.1151246.
|
[18] |
Lores J, Prada C E, Ramírez-Montaño D, Nastasi-Catanese J A, Pachajoa H. Clinical and molecular analysis of 26 individuals with Noonan syndrome in a reference institution in Colombia[J]. American Journal of Medical Genetics Part C,Seminars in Medical Genetics, 2020, 184(4):1042-1051.doi: 10.1002/ajmg.c.31869.
|
[19] |
Zhang Y M, Zhou K F, Wu L, Gu H J, Huang Z Y, Xu J. Downregulation of microRNA-143 promotes osteogenic differentiation of human adipose-derived mesenchymal stem cells through the k-Ras/MEK/ERK signaling pathway[J]. International Journal of Molecular Medicine, 2020, 46(3):965-976.doi: 10.3892/ijmm.2020.4651.
|
[20] |
Miyaoka Y, Tanaka M, Naiki T, Miyajima A. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways[J]. The Journal of Biological Chemistry, 2006, 281(49):37913-37920.doi: 10.1074/jbc.M606089200.
|
[21] |
Dolgacheva L P, Turovskaya M V, Dynnik V V, Zinchenko V P, Goncharov N V, Davletov B, Turovsky E A. Angiotensin Ⅱ activates different calcium signaling pathways in adipocytes[J]. Archives of Biochemistry and Biophysics, 2016, 593:38-49.doi: 10.1016/j.abb.2016.02.001.
pmid: 26850364
|
[22] |
Rock S, Li X, Song J, Townsend C M Jr, Weiss H L, Rychahou P, Gao T Y, Li J, Evers B M. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling[J]. PLoS One, 2019, 14(3):e0211134.doi: 10.1371/journal.pone.0211134.
|
[23] |
Shah S, Brock E J, Ji K, Mattingly R R. Ras and Rap1:a tale of two GTPases[J]. Seminars in Cancer Biology, 2019, 54:29-39.doi: 10.1016/j.semcancer.2018.03.005.
|
[24] |
Jas'kiewicz A, Pajᶏk B, Orzechowski A. The many faces of Rap1 GTPase[J]. International Journal of Molecular Sciences, 2018, 19(10):2848.doi: 10.3390/ijms19102848.
|
[25] |
Wu J Y, Wang M M, Han L M, Zhang H, Lei S F, Zhang Y H, Mo X B. RNA modification-related variants in genomic loci associated with body mass index[J]. Human Genomics, 2022, 16(1):25.doi: 10.1186/s40246-022-00403-1.
pmid: 35879730
|
[26] |
Struckhoff A P, Rana M K, Worthylake R A. RhoA can lead the way in tumor cell invasion and metastasis[J]. Frontiers in Bioscience (Landmark Edition), 2011, 16(5):1915-1926.doi: 10.2741/3830.
|
[27] |
Kunitomi H, Oki Y, Onishi N, Kano K, Banno K, Aoki D, Saya H, Nobusue H. The insulin-PI3K-Rac1 axis contributes to terminal adipocyte differentiation through regulation of actin cytoskeleton dynamics[J]. Genes to Cells, 2020, 25(3):165-174.doi: 10.1111/gtc.12747.
pmid: 31925986
|
[28] |
Hansson B, Morén B, Fryklund C, Vliex L, Wasserstrom S, Albinsson S, Berger K, Stenkula K G. Adipose cell size changes are associated with a drastic actin remodeling[J]. Scientific Reports, 2019, 9(1):12941.doi: 10.1038/s41598-019-49418-0.
pmid: 31506540
|
[29] |
Elsafadi M, Manikandan M, Dawud R A, Alajez N M, Hamam R, Alfayez M, Kassem M, Aldahmash A, Mahmood A. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization[J]. Cell Death & Disease, 2016, 7(8):e2321.doi: 10.1038/cddis.2016.196.
|
[30] |
Xiong X K, Liu R Y, Yechoor V, Saha P, Ma K. 200-LB:circadian regulation of the MRTF-SRF signaling promotes beige adipocyte development[J]. Diabetes, 2021, 70(1):200—LB.doi: 10.2337/db21-200-lb.
|
[31] |
Nobusue H, Onishi N, Shimizu T, Sugihara E, Oki Y, Sumikawa Y, Chiyoda T, Akashi K, Saya H, Kano K. Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation[J]. Nature Communications, 2014, 5:3368.doi: 10.1038/ncomms4368.
pmid: 24569594
|
[32] |
Snigdha K, Gangwani K S, Lapalikar G V, Singh A, Kango-Singh M. Hippo signaling in cancer:lessons from drosophila models[J]. Frontiers in Cell and Developmental Biology, 2019, 7:85.doi: 10.3389/fcell.2019.00085.
pmid: 31231648
|
[33] |
pmid: 35405135
|
[34] |
Samji P, Rajendran M K, Warrier V P, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer:a microRNA perspective[J]. Cellular Signalling, 2021, 78:109858.doi: 10.1016/j.cellsig.2020.109858.
|
[35] |
Shen H Y, Huang X, Zhao Y H, Wu D M, Xue K L, Yao J F, Wang Y S, Tang N, Qiu Y F. The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis[J]. Nature Communications, 2022, 13(1):6030.doi: 10.1038/s41467-022-33800-0.
pmid: 36229481
|