[1] |
Di W C, Lü J J, Jiang S, Lu C X, Yang Z, Ma Z Q, Hu W, Yang Y, Xu B. PGC-1: The energetic regulator in cardiac metabolism[J]. Current Issues in Molecular Biology, 2018, 28: 29-46.doi: 10.21775/cimb.028.029.
doi: 10.21775/cimb.028.029
pmid: 29388552
|
[2] |
Qi Y F, Kapterian T S, Du X M, Ma Q L, Fei W H, Zhang Y X, Huang X, Dawes I W, Yang H Y. CDP-diacylglycerol synthases regulate the growth of lipid droplets and adipocyte development[J]. Journal of Lipid Research, 2016, 57(5): 767-780.doi: 10.1194/jlr.M060574.
doi: 10.1194/jlr.M060574
pmid: 26946540
|
[3] |
Furth P A. Peroxisome proliferator-activated receptor gamma and BRCA1[J]. Endocrine-Related Cancer, 2019, 26(2): R73-R79.doi: 10.1530/ERC-18-0449.
doi: 10.1530/ERC-18-0449
|
[4] |
Cheng L, Zhou M Y, Gu Y J, Chen L, Wang Y. ZEB1: New advances in fibrosis and cancer[J]. Molecular and Cellular Biochemistry, 2021, 476(4): 1643-1650.doi: 10.1007/s11010-020-04036-7.
doi: 10.1007/s11010-020-04036-7
pmid: 33417164
|
[5] |
Martínez-Sena T, Soluyanova P, Guzmán C, Valdivielso J M, Castell J V, Jover R. The vitamin D receptor regulates glycerolipid and phospholipid metabolism in human hepatocytes[J]. Biomolecules, 2020, 10(3): 493.doi: 10.3390/biom10030493.
doi: 10.3390/biom10030493
URL
|
[6] |
Stratman A N, Farrelly O M, Mikelis C M, Miller M F, Wang Z Y, Pham V N, Davis A E, Burns M C, Pezoa S A, Castranova D, Yano J J, Kilts T M, Davis G E, Gutkind J S, Weinstein B M. Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling[J]. Nature Communications, 2020, 11: 1204.doi: 10.1038/s41467-020-14956-z.
doi: 10.1038/s41467-020-14956-z
pmid: 32139674
|
[7] |
Halford S, Dulai K S, Daw S C, Fitzgibbon J, Hunt D M. Isolation and chromosomal localization of two human CDP-diacylglycerol synthase(CDS) genes[J]. Genomics, 1998, 54(1): 140-144.doi: 10.1006/geno.1998.5547.
doi: 10.1006/geno.1998.5547
pmid: 9806839
|
[8] |
Mercadé A, Sánchez A, Folch J M. Characterization and physical mapping of the porcine CDS1 and CDS2 genes[J]. Animal Biotechnology, 2007, 18(1): 23-35.doi: 10.1080/10495390601091073.
doi: 10.1080/10495390601091073
pmid: 17364441
|
[9] |
Inglis-Broadgate S L, Ocaka L, Banerjee R, Gaasenbeek M, Chapple J P, Cheetham M E, Clark B J, Hunt D M, Halford S. Isolation and characterization of murine cds (CDP-diacylglycerol synthase) 1 and 2[J]. Gene, 2005, 356: 19-31.doi: 10.1016/j.gene.2005.04.037.
doi: 10.1016/j.gene.2005.04.037
pmid: 16023307
|
[10] |
Blunsom N J, Cockcroft S. CDP-diacylglycerol synthases (CDS): Gateway to phosphatidylinositol and cardiolipin synthesis[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 63.doi: 10.3389/fcell.2020.00063.
doi: 10.3389/fcell.2020.00063
pmid: 32117988
|
[11] |
Mak H Y, Ouyang Q, Tumanov S, Xu J S, Rong P, Dong F T, Lam S M, Wang X W, Lukmantara I, Du X M, Gao M M, Brown A J, Gong X, Shui G H, Stocker R, Huang X, Chen S, Yang H Y. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway[J]. Nature Communications, 2021, 12: 6877.doi: 10.1038/s41467-021-27279-4.
doi: 10.1038/s41467-021-27279-4
pmid: 34824276
|
[12] |
D'Souza K, Kim Y J, Balla T, Epand R M. Distinct properties of the two isoforms of cdp-diacylglycerol synthase[J]. Biochemistry, 2014, 53(47):7358-7367.doi: 10.1021/bi501250m.
doi: 10.1021/bi501250m
pmid: 25375833
|
[13] |
Qi Y F, Sun L, Yang H Y. Lipid droplet growth and adipocyte development: Mechanistically distinct processes connected by phospholipids[J]. Biochimica et Biophysica Acta(BBA)- Molecular and Cell Biology of Lipids, 2017, 1862(10): 1273-1283.doi: 10.1016/j.bbalip.2017.06.016.
doi: 10.1016/j.bbalip.2017.06.016
|
[14] |
Marabotti A, Scafuri B, Facchiano A. Predicting the stability of mutant proteins by computational approaches: An overview[J]. Briefings in Bioinformatics, 2020, 22(3): bbaa074.doi: 10.1093/bib/bbaa074.
doi: 10.1093/bib/bbaa074
URL
|
[15] |
Kamacioglu A, Tuncbag N, Ozlu N. Structural analysis of mammalian protein phosphorylation at a proteome level[J]. Structure, 2021, 29(11): 1219-1229.doi: 10.1016/j.str.2021.06.008.
doi: 10.1016/j.str.2021.06.008
pmid: 34192515
|
[16] |
Xu Y Q, Mak H Y, Lukmantara I, Li Y E, Hoehn K L, Huang X, Du X M, Yang H Y. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms[J]. The Journal of Biological Chemistry, 2019, 294(45): 16740-16755.doi: 10.1074/jbc.RA119.009992.
doi: 10.1074/jbc.RA119.009992
URL
|
[17] |
Panda A, Thakur R, Krishnan H, Naik A, Shinde D, Raghu P. Functional analysis of mammalian phospholipase D enzymes[J]. Bioscience Reports, 2018, 38(6): BSR20181690.doi: 10.1042/BSR20181690.
doi: 10.1042/BSR20181690
URL
|
[18] |
Serricchio M, Vissa A, Kim P K, Yip C M, McQuibban G A. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins[J]. Biochimica et Biophysica Acta(BBA) -Molecular and Cell Biology of Lipids, 2018, 1863(4): 447-457.doi: 10.1016/j.bbalip.2018.01.007.
doi: 10.1016/j.bbalip.2018.01.007
|
[19] |
Waugh M G. Assay for CDP-diacylglycerol generation by CDS in membrane fractions[M]// Methods in Molecular Biology. New York: Springer New York, 2016:247-254.doi: 10.1007/978-1-4939-3170-5_21.
doi: 10.1007/978-1-4939-3170-5_21
|
[20] |
Saini-Chohan H K, Holmes M G, Chicco A J, Taylor W A, Moore R L, McCune S A, Hickson-Bick D L, Hatch G M, Sparagna G C. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure[J]. Journal of Lipid Research, 2009, 50(8): 1600-1608.doi: 10.1194/jlr.M800561-JLR200.
doi: 10.1194/jlr.M800561-JLR200
pmid: 19001357
|
[21] |
Lykidis A, Jackson P D, Rock C O, Jackowski S. The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content[J]. Journal of Biological Chemistry, 1997, 272(52): 33402-33409.doi: 10.1074/jbc.272.52.33402.
doi: 10.1074/jbc.272.52.33402
pmid: 9407135
|
[22] |
Saito S, Goto K, Tonosaki A, Kondo H. Gene cloning and characterization of CDP-diacylglycerol synthase from rat brain[J]. Journal of Biological Chemistry, 1997, 272(14): 9503-9509.doi: 10.1074/jbc.272.14.9503.
doi: 10.1074/jbc.272.14.9503
pmid: 9083091
|
[23] |
Matos B, Publicover S J, Castro L F C, Esteves P J, Fardilha M. Brain and testis: More alike than previously thought?[J]. Open Biology, 2021, 11(6): 200322.doi: 10.1098/rsob.200322.
doi: 10.1098/rsob.200322
URL
|
[24] |
Guo J H, Huang Q, Studholme D J, Wu C Q, Zhao Z. Transcriptomic analyses support the similarity of gene expression between brain and testis in human as well as mouse[J]. Cytogenetic and Genome Research, 2005, 111(2): 107-109.doi: 10.1159/000086378.
doi: 10.1159/000086378
pmid: 16103650
|
[25] |
Blunsom N J, Gomez-Espinosa E, Ashlin T G, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein,TAMM41 and not due to the integral membrane protein,CDP-diacylglycerol synthase 1[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2018, 1863(3):284-298.doi: 10.1016/j.bbalip.2017.12.005.
doi: 10.1016/j.bbalip.2017.12.005
|
[26] |
doi: 10.27257/d.cnki.gnxhc.2021.001202
|
|
Shi D D. Screening of differential expressed genes related to daily gain and molecular characterization of CDS1,a candidate gene in Qinchuan cattle[D]. Yinchuan: Ningxia University, 2021.
|