[1] |
Dean R,van Kan J A L, Pretorius Z A, Hammond-Kosack K E, di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D.The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4):414-430.doi: 10.1111/j.1364-3703.2011.00783.x.
|
[2] |
Dallery J F, Lapalu N, Zampounis A, Pign S, Luyten I, Amselem J, Wittenberg A H J, Zhou S G, de Queiroz M V, Robin G P, Auger A, Hainaut M, Henrissat B, Kim K T, Lee Y H, Lespinet O, Schwartz D C, Thon M R, O'Connell R J.Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters[J]. BMC Genomics, 2017, 18(1):667.doi: 10.1186/s12864-017-4083-x.
|
[3] |
Yan Y Q, Yuan Q F, Tang J T, Huang J B, Hsiang T, Wei Y D, Zheng L. Colletotrichum higginsianum as a model for understanding host-pathogen interactions:A review[J]. International Journal of Molecular Sciences, 2018, 19(7):2142.doi: 10.3390/ijms19072142.
|
[4] |
杨暹,冯红贤,杨跃生.硅对菜心炭疽病发生、菜薹形成及硅吸收沉积的影响[J].应用生态学报,2008,19(5):1006-1012.
|
|
Yang X,Feng H X,Yang Y S.Effects of silicon on flowering Chinese cabbage's anthracnose occurence,flower stalk formation,and silicon uptake and accumulation[J].Chinese Journal of Applied Ecology,2008,19(5):1006-1012.
|
[5] |
O'Connell R J, Thon M R, Hacquard S, Amyotte S G, Kleemann J, Torres M F,et al.Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9):1060-1065.doi: 10.1038/ng.2372.
|
[6] |
|
|
Pi L,Liu Y X,Shu C W,Zhou E X.Research progress on the interaction between plant pathogen effectors and their host plants[J].Molecular Plant Breeding,2018,16(6):2035-2040.
|
[7] |
Bjornson M, Zipfel C.Plant immunity:Crosstalk between plant immune receptors[J]. Current Biology, 2021, 31(12):R796-R798.doi: 10.1016/j.cub.2021.04.080.
|
[8] |
Kim S, Kim C Y, Park S Y, Kim K T, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J, Jeon J S, Khang C H, Kang S, Lee Y H.Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming[J]. Nature Communications, 2020, 11:5845.doi: 10.1038/s41467-020-19624-w.
|
[9] |
Franceschetti M, Maqbool A, Jiménez-Dalmaroni M J, Pennington H G, Kamoun S, Banfield M J.Effectors of filamentous plant pathogens:Commonalities amid diversity[J]. Microbiology and Molecular Biology Reviews, 2017, 81(2):e00066-e00016.doi: 10.1128/mmbr.00066-16.
|
[10] |
Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S, Talbot N J, Steinberg G.Long-distance endosome trafficking drives fungal effector production during plant infection[J]. Nature Communications, 2014, 5:5097.doi: 10.1038/ncomms6097.
|
[11] |
Marroquin-Guzman M, Hartline D, Wright J D, Elowsky C, Bourret T J, Wilson R A.The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease[J]. Nature Microbiology, 2017, 2:17054.doi: 10.1038/nmicrobiol.2017.54.
|
[12] |
Tollot M, Assmann D, Becker C, Altmüller J, Dutheil J Y, Wegner C E, Kahmann R.The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis[J]. PLoS Pathogens, 2016, 12(6):e1005697.doi: 10.1371/journal.ppat.1005697.
|
[13] |
Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P, Martin F, Kohler A. Melampsora larici- Populina transcript profiling during germination and timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy[J]. Molecular Plant-Microbe Interactions, 2011, 24(7):808-818.doi: 10.1094/MPMI-01-11-0006.
|
[14] |
Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, van Themaat E V L.Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts[J]. PNAS, 2013, 110(24):E2219-E2228.doi: 10.1073/pnas.1306807110.
|
[15] |
Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei M R, Döhlemann S, von Wirén N, Parniske M, Zuccaro A.Host-related metabolic cues affect colonization strategies of a root endophyte[J]. PNAS, 2013, 110(34):13965-13970.doi: 10.1073/pnas.1301653110.
|
[16] |
|
|
Chen Q G,Wang C J Z,Yang M,Zhou E X.Prediction of candidate effectors from the genome of Colletotrichum higginsianum[J].Chinese Journal of Tropical Crops,2015,36(6):1105-1111.
|
[17] |
Zhang S L, Liang M L, Naqvi N I, Lin C X, Qian W Q, Zhang L H, Deng Y Z.Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae[J]. Autophagy, 2017, 13(8):1318-1330.doi: 10.1080/15548627.2017.1327103.
|
[18] |
Gu Q N, Yuan Q F, Zhao D, Huang J B, Hsiang T, Wei Y D, Zheng L.Acetyl-coenzyme A synthetase gene ChAcs1 is essential for lipid metabolism,carbon utilization and virulence of the hemibiotrophic fungus Colletotrichum higginsianum[J]. Molecular Plant Pathology, 2019, 20(1):107-123.doi: 10.1111/mpp.12743.
|
[19] |
Stephenson S A, Hatfield J, Rusu A G, MacLean D J, Manners J M. CgDN3:an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis[J]. Molecular Plant-Microbe Interactions, 2000, 13(9):929-941.doi: 10.1094/mpmi.2000.13.9.929.
|
[20] |
Yoshino K, Irieda H, Sugimoto F, Yoshioka H, Okuno T, Takano Y.Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3[J]. Molecular Plant-Microbe Interactions, 2012, 25(5):625-636.doi: 10.1094/MPMI-12-11-0316.
|
[21] |
Takahara H, Hacquard S, Kombrink A, Hughes H B, Halder V, Robin G P, Hiruma K, Neumann U V, Shinya T, Kombrink E, Shibuya N, Thomma B P H J, O'Connell R J. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity[J]. The New Phytologist, 2016, 211(4):1323-1337.doi: 10.1111/nph.13994.
|
[22] |
Kleemann J, Rincon-Rivera L J, Takahara H, Neumann U V, van Themaat E V L, van der Does H C, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O'Connell R J.Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum[J]. PLoS Pathogens, 2012, 8(4):e1002643.doi: 10.1371/journal.ppat.1002643.
|
[23] |
Sanz-Martín J M, Pacheco-Arjona J R, Bello-Rico V, Vargas W A, Monod M, Díaz-Mínguez J M, Thon M R, Sukno S A.A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola[J]. Molecular Plant Pathology, 2016, 17(7):1048-1062.doi: 10.1111/mpp.12347.
|
[24] |
Vargas W A, Sanz-Martín J M, Rech G E, Armijos-Jaramillo V D, Rivera L P, Echeverria M M, Díaz-Mínguez J M, Thon M R, Sukno S A.A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development[J]. Molecular Plant-Microbe Interactions, 2016, 29(2):83-95.doi: 10.1094/MPMI-09-15-0209-R.
|