[1] Liu J J, Li J Q, Su X H, Xia Z L. Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco[J]. Environmental and Experimental Botany, 2014, 107:173-179. doi:10.1016/j.envexpbot.2014.06.012. [2] 霍勇锦, 徐紫薇, 王燃, 王欢颜, 刘剑君, 苏新宏, 张威, 杨铁钊, 夏宗良. 干旱胁迫下嫁接对烟草抗氧化酶活性、膜脂过氧化及胁迫响应基因表达的影响[J]. 烟草科技, 2016, 49(8):14-20. doi:10.16135/j.issn1002-0861.2015.0528. Huo Y J, Xu Z W, Wang R, Wang H Y, Liu J J, Su X H, Zhang W, Yang T Z, Xia Z L. Effects of grafting on antioxidant enzyme activities, membrane lipid peroxidation and stress-responsive gene expression in tobacco under drought stress[J]. Tobacco Science & Technology, 2016, 49(8):14-20. [3] I·şeri Ö D, Körpe D A, Sahin F I, Haberal M. High salt induced oxidative damage and antioxidant response in tomato grafted on tobacco[J]. Chilean Journal of Agricultural Research, 2015, 75(2):192-201. doi:10.4067/S0718-58392015000200008. [4] Zhang M, Xu J H, Liu G, Yang X P. Antifungal properties of a thaumatin-like protein from watermelon[J]. Acta Physiologiae Plantarum, 2018, 40(11):5881. doi:10.1007/s11738-018-2759-8. [5] Inoue Y, Kawaguchi A, Nakaho K. Bacterial wilt-resistant tomato rootstock suppresses migration of Ralstonia solanacearum into soil[J]. Journal of General Plant Pathology, 2018, 84(2):118-123. doi:10.1007/s10327-018-0771-x. [6] Kunwar S, Paret M L, Olson S M, Ritchie L, Rich J R, Freeman J, McAvoy T . Grafting using rootstocks with resistance to Ralstonia solanacearum against Meloidogyne incognita in tomato production[J]. Plant Disease, 2015, 99(1):119-124. doi:10.1094/PDIS-09-13-0936-RE. [7] 蔡健和, 黄福新, 石保峰, 李波, 朱桂宁, 秦碧霞, 周兴华, 李元科. 利用嫁接技术防治烟草青枯病试验研究[J]. 广西农业科学, 2010, 41(6):558-561. doi:10.3969/j.issn.2095-1191.2010.06.013. Cai J H, Huang F X, Shi B F, Li B, Zhu G N, Qin B X, Zhou X H, Li Y K. Control effects of tobacco bacterial wilt by grafting technique[J]. Guangxi Agricultural Sciences, 2010, 41(6):558-561. [8] 黎妍妍, 王林, 彭五星, 孙玉晓, 许汝冰, 黄俊斌, 李锡宏. 嫁接对烟草青枯病抗性及产质量的影响[J]. 中国烟草学报, 2016, 22(5):63-69. doi:10.16472/j.chinatobacco.2016.174. Li Y Y, Wang L, Peng W X, Sun Y X, Xu R B, Huang J B, Li X H. Effects of grafting on bacterial wilt resistance, yield and quality in tobacco[J]. Acta Tabacaria Sinica, 2016, 22(5):63-69. [9] King S R, Davis A R, Liu W G, Levi A. Grafting for disease resistance[J]. Hortscience, 2008, 43(6):1673-1676. doi:10.21273/HORTSCI.43.6.1673. [10] 黄雯. 青枯菌LAMP检测方法的建立及植物精油抑菌活性评价[D]. 重庆:西南大学, 2017. Huang W. Development of LAMP assays for detection of Ralstonia solanacearum and the antibacterial effects of essential oils on Ralstonia solanacearum[D]. Chongqing:Southwest University, 2017. [11] Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance[J]. Theoretical and Applied Genetics, 2003 , 106:765-770. doi:10.1007/s00122-002-1096-9. [12] 黎妍妍, 王林, 孙光伟, 李锡宏, 彭五星, 王昌军. 清江流域烟区烟草青枯病流行时间动态及气象因素分析[J]. 中国烟草学报, 2017,23(4):77-83. doi:10.16472/j.chinatobacco.2017.089. Li Y Y, Wang L, Sun G W, Li X H, Peng W X, Wang C J. Jemporal epidemic dynamics and climatic factors of transmission of tobacco bacterial wilt in Qingjiang river basin[J]. Acta Tabacaria Sinica, 2017,23(4):77-83. [13] Grey B E, Steck T R. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection[J]. Applied and Environmental Microbiology, 2001, 67(9):3866-3872. doi:10.1128/AEM.67.9.3866-3872.2001. [14] Zucker M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue[J]. Plant Physiology, 1965, 40(5):779-784. doi:10.1104/pp.40.5.779. [15] Liao Y, Smyth G K, Shi W. The R package rsubread is easier, faster, cheaper and better for alignment and quantification of RNA s equencing reads[J]. Nucleic Acids Research, 2019, 47(8):e47. doi:10.1093/nar/gkz114. [16] 雷阳, 成妍, 乔宁, 焦彦生, 苗如意, 杨玉花. 辣椒苗期抗感疫病比较转录组学分析[J]. 华北农学报, 2019, 34(3):194-202. doi:10.7668/hbnxb.201751450. Lei Y, Cheng Y, Qiao N, Jiao Y S, Miao R Y, Yang Y H. Comparative transcriptome analysis of Phytophthora blight resistance of pepper at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3):194-202. [17] Varešlija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O'Halloran P J, Ward E, Cocchiglia S, Hartmaier R, Castro C A, Zhu L, Tseng G C, Lucas P C, Puhalla S L, Brufsky A M, Hamilton R L, Mathew A, Leone J P, Basudan A, Hudson L, Dwyer R, Das S, O'Connor D P, Buckley P G, Farrell M, Hill A D K, Oesterreich S, Lee A V, Young L S. Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets[J]. Journal of the National Cancer Institute, 2019, 111(4):388-398. doi:10.1093/jnci/djy110. [18] 刘业霞, 付玲, 艾希珍, 王洪涛, 姬德刚. 嫁接对辣椒次生代谢的影响及其与青枯病抗性的关系[J]. 中国农业科学, 2013, 46(14):2963-2969. doi:10.3864/j.issn.0578-1752.2013.14.012. Liu Y X, Fu L, Ai X Z, Wang H T, Ji D G. Effect of grafting on secondary metabolism and its relationship with bacterial wilt resistance in pepper[J]. Scientia Agricultura Sinica, 2013, 46(14):2963-2969. [19] 冯壮志. 番茄抗青枯病生理机制及分子标记的研究[D]. 杭州:浙江大学, 2005. Feng Z Z. Studies on the physiological mechanism and molecular markers of tomato resistance to bacterial wilt[D]. Hangzhou:Zhejiang University, 2005. [20] 严泽生. 苦瓜嫁接苗酶变化及抗性和栽培效果研究[D]. 雅安:四川农业大学, 2007. Yan Z S. Study on enzyme changes, resistance and cultivation effect of grafted balsam pear seedlings[D]. Yaan:Sichuan Agricultural University, 2007. [21] Ishihara T, Mitsuhara I, Takahashi H, Nakaho K. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato[J]. PLoS One, 2012, 7(10)e46763. doi:10.1371/journal.pone.0046763. [22] Ma Q H, Zhu H H, Qiao M Y. Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco[J]. Plant Pathology, 2018, 67(3):642-650.doi:10.1111/ppa.12767. [23] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C.Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis[J]. Journal of Plant Physiology, 2008, 165(14):1491-1499. doi:10.1016/j.jplph.2007.11.005. [24] Wang G F, Balint-Kurti P J. Maize homologs of CCoAOMT and HCT, two key enzymes in lignin biosynthesis, form complexes with the NLR Rp1 protein to modulate the defense response[J]. Plant Physiology, 2016,171(3):2166-2177. doi:10.1104/pp.16.00224. [25] 段曦. 嫁接提高辣椒根腐病和青枯病抗性的机理研究[D]. 泰安:山东农业大学, 2016. Duan X. Study on the mechanism of grafting improving disease resistant of root rot and bacterial wilt in pepper[D]. Taian:Shandong Agricultural University, 2016. [26] Li Y, Chen M, Wang S L, Ning J, Ding X H, Chu Z H. AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco[J]. Plant Cell, Tissue and Organ Culture, 2015, 122(2):309-319. doi:10.1007/s11240-015-0767-6. [27] 李洋. 转录因子AtMYB11和AtMYB12在茄科作物上调控多酚类物质合成的研究[D]. 泰安:山东农业大学, 2016.doi:10.7666/d.Y3031782. Li Y. Effect of transcription factor AtMYB11 and AtMYB12 on production of polyphenols in solanaceae crops[D]. Taian:Shandong Agricultural University, 2016. [28] Noda S, Koshiba T, Hattori T, Yamaguchi M, Suzuki S,Umezawa T.The expression of a rice secondary wall-specific cellulose synthase gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/63[J]. Planta, 2015, 242(3):589-600. doi:10.1007/s00425-015-2343-z. [29] 李秀钰, 贺付蒙, 韩瑛琪, 赵潇璨, 武佳文, 朱元芳, 周磊, 石奇海, 冯哲, 李凤兰. 马铃薯 StPR1 基因克隆及表达特异性分析[J]. 华北农学报, 2019, 34(2):66-71. doi:10.7668/hbnxb.201751433. Li X Y, He F M, Han Y Q, Zhao X C, Wu J W, Zhu Y F, Zhou L, Shi Q H, Feng Z, Li F L. Cloning and expression characteristics of Solanum tuberosum StPR1 gene[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2):66-71. [30] van Loon L C, Rep M, Pieterse C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology, 2006, 44(1):135-162. doi:10.1146/annurev.phyto.44.070505.143425. [31] Nisha S, Revathi K, Chandrasekaran R, Kirubakaran S A, Sathish-Narayanan S,Stout M J,Senthil-Nathan S. Effect of plant compounds on induced activities of defense-related enzymes and pathogenesis related protein in bacterial blight disease susceptible rice plant[J]. Physiological and Molecular Plant Pathology, 2012,80:1-9. doi:10.1016/j.pmpp.2012.07.001. [32] 王艳艳, 魏珉, 沈琼, 李岩, 史庆华. 不同抗性黄瓜砧木对南方根结线虫侵染的生理生化反应[J]. 山东农业大学学报(自然科学版), 2014,45(4):522-528. doi:10.3969/j.issn.1000-2324.2014.04.008. Wang Y Y, Wei M, Shen Q, Li Y, Shi Q H. The physiological and biochemical response of cucumber rootstocks with different resistance against Meloidogyne incognita[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2014,45(4):522-528. [33] Liu C X, Zhang T Z.Expansion and stress responses of the AP2/EREBP superfamily in cotton[J]. BMC Genomics, 2017, 18(1):118.doi:10.1186/s12864-017-3517-9. [34] 姜夕雷. 不同砧木对"烟富3"苹果接穗发育影响的分子机理研究[D].烟台:烟台大学, 2019. Jiang X L. Molecular mechanism of different rootstocks on the development of scion of ″Yanfu 3″ apple[D]. Yantai:Yantai University, 2019. [35] Goldschmidt E E. Plant grafting:new mechanisms, evolutionary implications[J]. Frontiers in Plant Science, 2014, 5:727. doi:10.3389/fpls.2014.00727. [36] Wang J, Jiang L B, Wu R L. Plant grafting:how genetic exchange promotes vascular reconnection[J]. New Phytologist, 2017, 214(1):56-65. doi:10.1111/nph.14383. [37] 郝婕, 王献革, 李学营, 鄢新民, 冯建忠. 苹果实生苗不同嫁接方法下内源激素含量变化分析[J]. 华北农学报, 2013, 28(S1):259-264. doi:10.7668/hbnxb.2013.S1.048. Hao J, Wang X G, Li X Y, Yan X M, Feng J Z. Analysis on the changes of endogenous hormones in apple seedlings by different grafting methods[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1):259-264. [38] 阳燕娟, 郭世荣, 于文进. 嫁接对盐胁迫下西瓜幼苗体内离子和内源激素含量与分布的影响[J]. 西北植物学报, 2015, 35(3):500-507. doi:10.7606/j.issn.1000-4025.2015.03.0500. Yang Y J, Guo S R, Yu W J. Effect of rootstock-grafting on the contents and distributions of ions and endogenous hormones in watermelon seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3):500-507. [39] 谭明明, 唐剑, 贺忠群, 鞠丽萍. 嫁接对铜胁迫下甜瓜幼苗生长及内源激素水平的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):113-120. doi:10.13207/j.cnki.jnwafu.2016.02.016. Tan M M, Tang J, He Z Q, Ju L P. Effects of grafting on growth and endogenous hormones of melon (Cucumis melo L.) seedlings under copper stress[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(2):113-120. [40] 刘业霞. 嫁接提高辣椒青枯病抗性的生理生化机制[D]. 泰安:山东农业大学, 2011.doi:10.7666/d.d143691. Liu Y X. The physiological and biochemical mechanism of grafted pepper in improvement of bacterial wilt resistance[D]. Taian:Shandong Agricultural University, 2011. [41] Berendzen K W, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP-and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription[J]. BMC Plant Biology, 2012, 12:125. doi:10.1186/1471-2229-12-125. [42] Li S T, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J]. The Plant Journal,2013, 76(6):901-913. doi:10.1111/tpj.12348. |