[1] |
|
|
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K. Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17):3404-3414.
|
[2] |
|
|
Xiang H T, Wang T T, Zheng D F, Wang L Z, Luo Y, Li W. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage[J]. Chinese Agricultural Science Bulletin, 2016, 32(36):16-23.
doi: 10.11924/j.issn.1000-6850.casb16070120
|
[3] |
Qiu X J, Gong R, Tan Y B, Yu S B. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds[J]. Theoretical and Applied Genetics, 2012, 125(8):1717-1726.doi: 10.1007/s00122-012-1948-x.
pmid: 22864386
|
[4] |
|
|
Xu Z J, Chen W F, Ma D R, Lü Y N, Zhou S Q, Liu L X. Correlations between rice grain shapes and main qualitative characteristics[J]. Acta Agronomica Sinica, 2004, 30(9):894-900.
|
[5] |
|
|
Yu X, Zeng Z F, Yang W F, Han J, Ke S W. Advances in studies on genetic regulation of rice grain shape[J]. Journal of Anhui Agricultural Sciences, 2019, 47(5):21-28.
|
[6] |
|
|
Kang Y W, Chen Y Y, Zhang Y X. Research progress and breeding prospects of grain size associated genes in rice[J]. Chinese Journal of Rice Science, 2020, 34(6):479-490.
doi: 10.16819/j.1001-7216.2020.9135
|
[7] |
Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8):1266-1280.doi: 10.1016/j.molp.2021.04.011.
pmid: 33930509
|
[8] |
Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3:17043.doi: 10.1038/nplants.2017.43.
pmid: 28394310
|
[9] |
Omboki R B, Zheng Y, Chen Z W, Guan H Z, Tang W Q, Huang L K, Xie X F, Wu W R. Pooled mapping of quantitative trait loci conferring male sterility-conditioned glume split in rice ( Oryza sativa)[J]. Plant Breeding, 2018, 137(6):848-856.doi: 10.1111/pbr.12643.
URL
|
[10] |
Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice[J]. The Plant Cell, 2021, 33(10):3331-3347.doi: 10.1093/plcell/koab194.
URL
|
[11] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8):949-954.doi: 10.1038/ng.3352.
pmid: 26147620
|
[12] |
Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2):629-640.doi: 10.1111/nph.16540.
URL
|
[13] |
Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45):19579-19584.doi: 10.1073/pnas.1014419107.
pmid: 20974950
|
[14] |
Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12):1666-1680.doi: 10.1038/cr.2012.151.
pmid: 23147796
|
[15] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6):707-711.doi: 10.1038/ng.2612.
pmid: 23583977
|
[16] |
Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15(1):28.doi: 10.1186/s12915-017-0365-7.
pmid: 28385155
|
[17] |
Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3(6):17064.doi: 10.1038/nplants.2017.64.
URL
|
[18] |
Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Abdul Rehman R M, Li J J, Zhang H L, Li Z C. Alternative splicing of Os LG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, 16(9):1667-1678.doi: 10.1111/pbi.12903.
URL
|
[19] |
Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3,a novel QTL encoding a GSK3/SHAGGY-like kinase,epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5):754-756.doi: 10.1016/j.molp.2018.03.006.
|
[20] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2:15195.doi: 10.1038/nplants.2015.195.
|
[21] |
Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11(1):2629.doi: 10.1038/s41467-020-16403-5.
|
[22] |
Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B. The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4):2077-2090.doi: 10.1104/pp.18.01574.
pmid: 31138620
|
[23] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8):944-948.doi: 10.1038/ng.3346.
|
[24] |
Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1):1240.doi: 10.1038/s41467-018-03616-y.
|
[25] |
朱业宝, 郭玉春, 梁康迳, 孙新立. 水稻粒形调控基因的研究进展[J]. 福建农林大学学报(自然科学版), 2015, 44(1):1-7.doi: 10.1111/jipb.12062.
|
|
Zhu Y B, Guo Y C, Liang K J, Sun X L. Progress on the genes controlling grain shape of rice[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(1):1-7.
|
[26] |
Mogga M, Sibiya J, Shimelis H, Lamo J, Yao N. Diversity analysis and genome-wide association studies of grain shape and eating quality traits in rice ( Oryza sativa L.) using DArT markers[J]. PLoS One, 2018, 13(6):e0198012.doi: 10.1371/journal.pone.0198012.
URL
|
[27] |
Lü Y, Wang Y Y, Jahan N, Hu H T, Shang L G, Lin H Y, Dong G J, Hu J, Gao Z Y, Qian Q, Zhang Y, Guo L B. Genome-wide association analysis and allelic mining of grain shape-related traits in rice[J]. Rice Science, 2019, 26(6):384-392.doi: 10.1016/j.rsci.2018.09.002.
|
[28] |
Feng Y, Lu Q, Zhai R R, Zhang M C, Xu Q, Yang Y L, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Genome wide association mapping for grain shape traits in indica rice[J]. Planta, 2016, 244(4):819-830.doi: 10.1007/s00425-016-2548-9.
pmid: 27198135
|
[29] |
Liu C, Song J L, Wang Y C, Huang X R, Zhang F, Wang W S, Xu J L, Zhang Y, Yu H X, Pang Y H, Bao J S. Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice[J]. Journal of Cereal Science, 2020, 96:103091.doi: 10.1016/j.jcs.2020.103091.
URL
|
[30] |
Li N, Zheng H L, Cui J N, Wang J G, Liu H L, Sun J, Liu T T, Zhao H W, Lai Y C, Zou D T. Genome-wide association study and candidate gene analysis of alkalinity tolerance in Japonica rice germplasm at the seedling stage[J]. Rice, 2019, 12(1):24.doi: 10.1186/s12284-019-0285-y.
|
[31] |
Wang Q X, Xie W B, Xing H K, Yan J, Meng X Z, Li X L, Fu X K, Xu J Y, Lian X M, Yu S B, Xing Y Z, Wang G W. Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study[J]. Molecular Plant, 2015, 8(6):946-957.doi: 10.1016/j.molp.2015.02.014.
pmid: 25747843
|
[32] |
Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z. A novel tiller angle gene, TAC3,together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genetics, 2016, 12(11):e1006412.doi: 10.1371/journal.pgen.1006412.
URL
|
[33] |
Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard J H. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O.glaberrima[J]. Theoretical and Applied Genetics, 2004, 109(3):630-639.doi: 10.1007/s00122-004-1668-y.
pmid: 15105992
|
[34] |
pmid: 14503006
|
[35] |
|
|
Jiang Q G, Li F L, Xiao Y, Zhang H Y, Wang X D, Wu X J. Utilization of wild rice resources in rice breeding[J]. Hybrid Rice, 2006, 21(4):7-10.
|
[36] |
Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. Genetic bases of rice grain shape:So many genes,so little known[J]. Trends in Plant Science, 2013, 18(4):218-226.doi: 10.1016/j.tplants.2012.11.001.
URL
|
[37] |
Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2(1):467.doi: 10.1038/ncomms1467.
|
[38] |
Zhai L Y, Zheng T Q, Wang X Y, Wang Y, Chen K, Wang S, Wang Y, Xu J L, Li Z K. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study[J]. Rice, 2018, 11(1):13.doi: 10.1186/s12284-018-0204-7.
pmid: 29511908
|
[39] |
Nagasawa N, Hibara K I, Heppard E P, Vander Velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13,required for proper size balance between embryo and endosperm in rice[J]. The Plant Journal, 2013, 75(4):592-605.doi: 10.1111/tpj.12223.
URL
|
[40] |
Xu F, Fang J, Ou S J, Gao S P, Zhang F X, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C C. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant,Cell & Environment, 2015, 38(4):800-811.doi: 10.1111/pce.12452.
|