[1] |
Fei X T, Shi J W, Liu Y L, Niu J S, Wei A Z. The steps from sexual reproduction to apomixis[J]. Planta, 2019, 249(6):1715-1730.doi: 10.1007/s00425-019-03113-6.
doi: 10.1007/s00425-019-03113-6
pmid: 30963237
|
[2] |
Spillane C, Curtis M D, Grossniklaus U. Apomixis technology development-virgin births in farmers' fields?[J]. Nature Biotechnology, 2004, 22(6):687-691.doi: 10.1038/nbt976.
doi: 10.1038/nbt976
pmid: 15175691
|
[3] |
Ortiz J P A, Quarin C L, Pessino S C, Acuña C, Martínez E J, Espinoza F, Hojsgaard D H, Sartor M E, Cáceres M E, Pupilli F. Harnessing apomictic reproduction in grasses:What we have learned from Paspalum[J]. Annals of Botany,2013,112(5):767-787.doi: 10.1093/aob/mct152.
doi: 10.1093/aob/mct152
|
[4] |
Conner J A, Mookkan M, Huo H Q, Chae K, Ozias-Akins P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36):11205-11210.doi: 10.1073/pnas.1505856112.
doi: 10.1073/pnas.1505856112
pmid: 26305939
|
[5] |
Sailer C, Schmid B, Grossniklaus U. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants[J]. Current Biology, 2016, 26(3):331-337.doi: 10.1016/j.cub.2015.12.045.
doi: 10.1016/j.cub.2015.12.045
|
[6] |
Fiaz S, Wang X K, Younas A, Alharthi B, Riaz A, Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations[J]. GM Crops & Food, 2021, 12(1):57-70.doi: 10.1080/21645698.2020.1808423.
doi: 10.1080/21645698.2020.1808423
|
[7] |
doi: 10.3969/j.issn.1008-1445.2001.03.009
|
|
Huang Q C, Sun J S, Xing S P. Research progress of apomixis breeding in rice[J]. Chinese Bulletin of Life Sciences, 1999, 11(S1):91-93.
|
[8] |
Puri A, Basha P O, Kumar M, Rajpurohit D, Randhawa G S, Kianian S F, Rishi A, Dhaliwal H S. The polyembryo gene( OsPE)in rice[J]. Functional & Integrative Genomics, 2010, 10(3):359-366.doi: 10.1007/s10142-009-0139-6.
doi: 10.1007/s10142-009-0139-6
|
[9] |
Paul P, Awasthi A, Kumar S, Verma S K, Prasad R, Dhaliwal H S. Development of multiple embryos in polyembryonic insertional mutant OsPE of rice[J]. Plant Cell Reports, 2012, 31(10):1779-1787.doi: 10.1007/s00299-012-1291-3.
doi: 10.1007/s00299-012-1291-3
pmid: 22790320
|
[10] |
Slotte T, Huang H R, Holm K, Ceplitis A, St Onge K S, Chen J, Lagercrantz U, Lascoux M. Splicing variation at a FLOWERING LOCUS C homeolog is associated with flowering time variation in the tetraploid Capsella bursa-pastoris[J]. Genetics, 2009, 183(1):337-345.doi: 10.1534/genetics.109.103705.
doi: 10.1534/genetics.109.103705
pmid: 19581451
|
[11] |
Sanchez S E, Petrillo E, Beckwith E J, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing[J]. Nature, 2010, 468(7320):112-116.doi: 10.1038/nature09470.
doi: 10.1038/nature09470
|
[12] |
Wang X X, Wu F M, Xie Q G, et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis[J]. The Plant Cell, 2012, 24(8):3278-3295.doi: 10.1105/tpc.112.100081.
doi: 10.1105/tpc.112.100081
URL
|
[13] |
Reddy A S N, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants[J]. The Plant Cell, 2013, 25(10):3657-3683.doi: 10.1105/tpc.113.117523.
doi: 10.1105/tpc.113.117523
pmid: 24179125
|
[14] |
Mastrangelo A M, Marone D, Laidò G, De Leonardis A M,De Vita P.Alternative splicing:Enhancing ability to cope with stress via transcriptome plasticity[J]. Plant Science, 2012, 185/186:40-49.doi: 10.1016/j.plantsci.2011.09.006.
doi: 10.1016/j.plantsci.2011.09.006
URL
|
[15] |
Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing,development,and stress responses[J]. The Plant Cell, 2013, 25(10):3640-3656.doi: 10.1105/tpc.113.113803.
doi: 10.1105/tpc.113.113803
URL
|
[16] |
Punzo P, Grillo S, Batelli G. Alternative splicing in plant abiotic stress responses[J]. Biochemical Society Transactions, 2020, 48(5):2117-2126.doi: 10.1042/bst20200281.
doi: 10.1042/bst20200281
|
[17] |
Weatheritt R J, Sterne-Weiler T, Blencowe B J. The ribosome-engaged landscape of alternative splicing[J]. Nature Structural & Molecular Biology, 2016, 23(12):1117-1123.doi: 10.1038/nsmb.3317.
doi: 10.1038/nsmb.3317
|
[18] |
Liu Y S, Gonzàlez-Porta M, Santos S, Brazma A, Marioni J C, Aebersold R, Venkitaraman A R, Wickramasinghe V O. Impact of alternative splicing on the human proteome[J]. Cell Reports, 2017, 20(5):1229-1241.doi: 10.1016/j.celrep.2017.07.025.
doi: 10.1016/j.celrep.2017.07.025
|
[19] |
Chamala S, Feng G, Chavarro C, Barbazuk W B. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3:33.doi: 10.3389/fbioe.2015.00033.
doi: 10.3389/fbioe.2015.00033
pmid: 25859541
|
[20] |
Zhang R X, Calixto C P G, Marquez Y, et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing[J]. Nucleic Acids Research, 2017, 45(9):5061-5073.doi: 10.1093/nar/gkx267.
doi: 10.1093/nar/gkx267
URL
|
[21] |
Li Y, Du Y X, Huai J L, Jing Y J, Lin R C. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis[J]. The Plant Cell, 2022, 34(11):4191-4212.doi: 10.1093/plcell/koac235.
doi: 10.1093/plcell/koac235
URL
|