[1] |
Ling Q H, Broad W, Trösch R, Töpel M, Demiral Sert T, Lymperopoulos P, Baldwin A, Jarvis R P. Ubiquitin-dependent chloroplast-associated protein degradation in plants[J]. Science, 2019, 363(6429):eaav4467.doi: 10.1126/science.aav4467.
doi: 10.1126/science.aav4467
|
[2] |
Nicolaisen K, Missbach S, Hsueh Y C, Ertel F, Fulgosi H, Sommer M S, Schleiff E. The Omp85-type outer membrane protein p36 of Arabidopsis thaliana evolved by recent gene duplication[J]. Journal of Plant Research, 2015, 128(2):317-325.doi: 10.1007/s10265-014-0693-4.
doi: 10.1007/s10265-014-0693-4
pmid: 25608613
|
[3] |
Hsueh Y C, Flinner N, Gross L E, Haarmann R, Mirus O, Sommer M S, Schleiff E. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family[J]. Proteins, 2017, 85(8):1391-1401.doi: 10.1002/prot.24725.
doi: 10.1002/prot.24725
URL
|
[4] |
O'Neil P K, Richardson L G L, Paila Y D, Piszczek G, Chakravarthy S, Noinaj N, Schnell D. The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24):E4868-E4876.doi: 10.1073/pnas.1621179114.
doi: 10.1073/pnas.1621179114
|
[5] |
Hsueh Y C, Nicolaisen K, Gross L E, Nöthen J, Schauer N, Vojta L, Ertel F, Koch I, Ladig R, Fulgosi H, Fernie A R, Schleiff E. The outer membrane Omp85-like protein P39 influences metabolic homeostasis in mature Arabidopsis thaliana[J]. Plant Biology, 2018, 20(5):825-833.doi: 10.1111/plb.12839.
doi: 10.1111/plb.12839
pmid: 29758131
|
[6] |
Ling Q H, Sadali N M, Soufi Z, Zhou Y, Huang B Q, Zeng Y L, Rodriguez-Concepcion M, Jarvis R P. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato[J]. Nature Plants, 2021, 7(5):655-666.doi: 10.1038/s41477-021-00916-y.
doi: 10.1038/s41477-021-00916-y
pmid: 34007040
|
[7] |
doi: 10.1038/s41477-021-00927-9
|
[8] |
Shanmugabalaji V, Kessler F. CHLORAD:eradicating translocon components from the outer membrane of the chloroplast[J]. Molecular Plant, 2019, 12(4):467-469.doi: 10.1016/j.molp.2019.03.002.
doi: S1674-2052(19)30093-0
pmid: 30890496
|
[9] |
doi: 10.3969/j.issn.1000-4440.2020.03.001
|
|
Teng H Y. Subcellular localization and expression under drought conditions of rice Ossp1 gene[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(3):529-534.
|
[10] |
doi: 10.7668/hbnxb.20192088
|
|
Teng H Y, Xu D. Effects of editing and overexpression of OsSP1 gene on rice growth and drought tolerance[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5):1-9.
|
[11] |
Schmittgen T D, Livak K J. Analyzing Real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.doi: 10.1038/nprot.2008.73.
doi: 10.1038/nprot.2008.73
pmid: 18546601
|
[12] |
Zhang Y, Su J B, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes[J]. Plant Methods, 2011, 7(1):30.doi: 10.1186/1746-4811-7-30.
doi: 10.1186/1746-4811-7-30
pmid: 21961694
|
[13] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096
URL
|
[14] |
Guruprasad K, Reddy B V B, Pandit M W. Correlation between stability of a protein and its dipeptide composition:A novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Engineering, Design and Selection, 1990, 4(2):155-161.doi: 10.1093/protein/4.2.155.
doi: 10.1093/protein/4.2.155
|
[15] |
doi: 10.1093/oxfordjournals.jbchem.a133168
|
[16] |
doi: 10.1007/978-1-4939-1136-3_9
|
[17] |
Day P M, Inoue K, Theg S M. Chloroplast outer membrane β-barrel proteins use components of the general import apparatus[J]. The Plant Cell, 2019, 31(8):1845-1855.doi: 10.1105/tpc.19.00001.
doi: 10.1105/tpc.19.00001
pmid: 31217220
|
[18] |
Klinger A, Gosch V, Bodensohn U, Ladig R, Schleiff E. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2019, 1866(4):663-672.doi: 10.1016/j.bbamcr.2019.01.004.
doi: 10.1016/j.bbamcr.2019.01.004
|
[19] |
Gross L E, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80[J]. The Plant Cell, 2021, 33(5):1657-1681.doi: 10.1093/plcell/koab052.
doi: 10.1093/plcell/koab052
pmid: 33624803
|
[20] |
Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J]. Journal of Integrative Plant Biology, 2016, 58(1):12-28.doi: 10.1111/jipb.12372.
doi: 10.1111/jipb.12372
URL
|
[21] |
Shi L, Zhang X B, Shi Y F, Xu X, He Y Q, Shao G S, Huang Q N, Wu J L. OsCDC48/48E complex is required for plant survival in rice( Oryza sativa L.)[J]. Plant Molecular Biology, 2019, 100(1/2):163-179.doi: 10.1007/s11103-019-00851-9.
doi: 10.1007/s11103-019-00851-9
|