[1] |
Khan Z, Jan R, Asif S, Farooq M, Jang Y H, Kim E G, Kim N, Kim K M. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system[J]. Scientific Reports, 2024, 14:1214.doi: 10.1038/s41598-024-51369-0.
|
[2] |
Yang L, Han R, Duan Y K, Li J Y, Gou T Y, Zhou J, Zhu H J, Xu Z M, Guo J, Gong H J. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress[J]. Plant Physiology and Biochemistry, 2024, 207:108416.doi: 10.1016/j.plaphy.2024.108416.
|
[3] |
Zhang K Y, Chang L, Li G H, Li Y F. Advances and future research in ecological stoichiometry under saline-alkali stress[J]. Environmental Science and Pollution Research, 2023, 30(3):5475-5486.doi: 10.1007/s11356-022-24293-x.
|
[4] |
Deinlein U, Stephan A B, Horie T, Luo W, Xu G H, Schroeder J I. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014, 19(6):371-379.doi: 10.1016/j.tplants.2014.02.001.
pmid: 24630845
|
[5] |
Hu Y C, Schmidhalter U. Opportunity and challenges of phenotyping plant salt tolerance[J]. Trends in Plant Science, 2023, 28(5):552-566.doi: 10.1016/j.tplants.2022.12.010.
pmid: 36628656
|
[6] |
Zhu X L, Wang B Q, Wang X, Wei X H. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa[J]. BMC Genomics, 2022, 23(1):447.doi: 10.1186/s12864-022-08683-6.
|
[7] |
Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism:a review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):286-291.doi: 10.1016/j.bbrc.2017.11.043.
|
[8] |
Isayenkov S V, Dabravolski S A, Pan T, Shabala S. Phylogenetic diversity and physiological roles of plant monovalent cation/H + antiporters[J]. Frontiers in Plant Science, 2020, 11:573564.doi: 10.3389/fpls.2020.573564.
|
[9] |
Pehlivan N, Sun L, Jarrett P, Yang X J, Mishra N, Chen L, Kadioglu A, Shen G X, Zhang H. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants[J]. Plant and Cell Physiology, 2016, 57(5):1069-1084.doi: 10.1093/pcp/pcw055.
pmid: 26985021
|
[10] |
Cao B N, Xia Z Q, Liu C Y, Fan W, Zhang S, Liu Q, Xiang Z H, Zhao A C. New insights into the structure-function relationship of the endosomal-type Na +,K +/H + antiporter NHX6 from mulberry( Morus notabilis)[J]. International Journal of Molecular Sciences, 2020, 21(2):428.doi: 10.3390/ijms21020428.
|
[11] |
Sze H, Chanroj S. Plant endomembrane dynamics:studies of K +/H + antiporters provide insights on the effects of pH and ion homeostasis[J]. Plant Physiology, 2018, 177(3):875-895.doi: 10.1104/pp.18.00142.
|
[12] |
Bassil E, Coku A, Blumwald E. Cellular ion homeostasis:emerging roles of intracellular NHX Na +/H + antiporters in plant growth and development[J]. Journal of Experimental Botany, 2012, 63(16):5727-5740.doi: 10.1093/jxb/ers250.
pmid: 22991159
|
[13] |
Huertas R, Rubio L, Cagnac O, García-Sánchez M J, De Dios Alché J, Venema K, Fernández J A, Rodríguez-Rosales M P. The K +/H + antiporter LeNHX2 increases salt tolerance by improving K + homeostasis in transgenic tomato[J]. Plant,Cell & Environment, 2013, 36(12):2135-2149.doi: 10.1111/pce.12109.
|
[14] |
Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S. Characterization of a novel Na +/H + antiporter gene InNHX2 and comparison of InNHX2 with InNHX1,which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory[J]. Plant and Cell Physiology, 2005, 46(2):259-267.doi: 10.1093/pcp/pci028.
pmid: 15695437
|
[15] |
Fu X K, Lu Z Y, Wei H L, Zhang J J, Yang X, Wu A M, Ma L, Kang M, Lu J H, Wang H T, Yu S X. Genome-wide identification and expression analysis of the NHX(sodium/hydrogen antiporter)gene family in cotton[J]. Frontiers in Genetics, 2020, 11:964.doi: 10.3389/fgene.2020.00964.
|
[16] |
Ayadi M, Martins V, Ben Ayed R, Jbir R, Feki M, Mzid R, Géros H, Aifa S, Hanana M. Genome wide identification,molecular characterization,and gene expression analyses of grapevine NHX antiporters suggest their involvement in growth,ripening,seed dormancy,and stress response[J]. Biochemical Genetics, 2020, 58(1):102-128.doi: 10.1007/s10528-019-09930-4.
|
[17] |
Sharma P, Mishra S, Pandey B, Singh G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat( Triticum aestivum L.)[J]. Frontiers in Plant Science, 2023, 14:1266699.doi: 10.3389/fpls.2023.1266699.
|
[18] |
|
|
Ai D, Wei Y C, Meng J X, Zhang J, Zhong C L, Zhang Y. Identification of NHX gene family and their responses to salt stress in Casuarina equisetifolia[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(5):750-760.
|
[19] |
|
|
Zhang Y M, Zhu L L, Chen Z G. Identification and expression analysis of NHX gene family in quinoa under salt stress[J]. Biotechnology Bulletin, 2022, 38(12):184-193.
|
[20] |
Pires I S, Negrão S, Pentony M M, Abreu I A, Oliveira M M, Purugganan M D. Different evolutionary histories of two cation/proton exchanger gene families in plants[J]. BMC Plant Biology, 2013, 13(1):97.doi: 10.1186/1471-2229-13-97.
|
[21] |
Kumar K, Jha S K, Kumar V, Sagar P, Tripathi S, Rathore M, Singh A K, Soren K R, Dixit G P. Identification and characterization of NHX gene family for their role under salt stress in Vigna mungo[J]. Physiologia Plantarum, 2024, 176(5):e14563.doi: 10.1111/ppl.14563.
|
[22] |
Parveen, Anwar-Ul-Haq M, Aziz T, Aziz O, Maqsood L. Potassium induces carbohydrates accumulation by enhancing morpho-physiological and biochemical attributes in soybean under salinity[J]. Archives of Agronomy and Soil Science, 2021, 67(7):946-959.doi: 10.1080/03650340.2020.1769075.
|
[23] |
Wu X X, Li J, Wu X D, Liu Q, Wang Z K, Liu S S, Li S N, Ma Y L, Sun J, Zhao L, Li H Y, Li D M, Li W B, Su A Y. Ectopic expression of Arabidopsis thaliana Na +(K +)/H + antiporter gene, AtNHX5,enhances soybean salt tolerance[J]. Genetics and Molecular Research, 2016, 15(2):1-12.doi: 10.4238/gmr.15027483.
|
[24] |
张慧军, 张万科, 俞嘉宁, 孔祥强, 陈受宜, 王丹, 张国强, 董合忠. 过量表达 TaNHX2基因提高转基因棉花的抗旱耐盐性[J]. 东北农业科学, 2021, 46(1):31-35,71.doi: 10.16423/j.cnki.1003-8701.2021.01.009.
|
|
Zhang H J, Zhang W K, Yu J N, Kong X Q, Chen S Y, Wang D, Zhang G Q, Dong H Z. The overexpression of TaNHX2 gene can improve salt and drought tolerance of transgenic cotton[J]. Journal of Northeast Agricultural Sciences, 2021, 46(1):31-35,71.
|
[25] |
Crespo-Herrera L A, Garkava-Gustavsson L, Åhman I. A systematic review of rye( Secale cereale L.)as a source of resistance to pathogens and pests in wheat( Triticum aestivum L.)[J]. Hereditas, 2017, 154(1):14.doi: 10.1186/s41065-017-0033-5.
|
[26] |
Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Qureshi M, Sangrador-Vegas A, Salazar G A, Tate J, Bateman A. The pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1):D279-D285.doi: 10.1093/nar/gkv1344.
|
[27] |
Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server:2018 update[J]. Nucleic Acids Research, 2018, 46(W1):W200-W204.doi: 10.1093/nar/gky448.
|
[28] |
Singh J, Varshney V, Tak N, Jha S. Genome-wide identification and expression analysis of glycogen synthase kinase encoding genes in foxtail millet( Setaria italica L.) under salinity,dehydration,and oxidative stress[J]. Plant Stress, 2023, 8:100165.doi: 10.1016/j.stress.2023.100165.
|
[29] |
丛郁, 杨顺瑛, 宋志忠, 郝东利, 苏彦华. 葡萄AMT基因家族生物信息学分析[J]. 中国农学通报, 2011, 27(25):193-199.
|
|
Cong Y, Yang S Y, Song Z Z, Hao D L, Su Y H. Bioinformatics analysis of AMT protein family in grape[J]. Chinese Agricultural Science Bulletin, 2011, 27(25):193-199.
doi: 10.11924/j.issn.1000-6850.2011-1057
|
[30] |
Mann S, Li J Y, Chen Y P. A pHMM-ANN based discriminative approach to promoter identification in prokaryote genomic contexts[J]. Nucleic Acids Research, 2007, 35(2):e12.doi: 10.1093/nar/gkl1024.
pmid: 17170007
|
[31] |
Letunic I, Bork P. Interactive tree of life(iTOL)v4:recent updates and new developments[J]. Nucleic Acids Research, 2019, 47(W1):W256-W259.doi: 10.1093/nar/gkz239.
|
[32] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
|
[33] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.doi: 10.1093/bioinformatics/btu817.
|
[34] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME Suite:tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(S2):W202-W208.doi: 10.1093/nar/gkp335.
|
[35] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327.doi: 10.1093/nar/30.1.325.
|
[36] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[37] |
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na +/H + antiporter genes[J]. Planta, 2011, 233(1):175-188.doi: 10.1007/s00425-010-1289-4.
|
[38] |
Ji Y H, Liu Z, Liu C, Shao Z Y, Zhang N, Suo M Q, Liu Y H, Wang L. Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato[J]. Frontiers in Genetics, 2024, 15:1396375.doi: 10.3389/fgene.2024.1396375.
|
[39] |
|
|
Luo J, Xu C M, Zhang G B, Yu J H. Bioinformation analysis and expression analysis of NHX genes family in pepper[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 15-24.
doi: 10.7668/hbnxb.20191999
|
[40] |
Wang Y, Ying J L, Zhang Y, Xu L, Zhang W T, Ni M, Zhu Y L, Liu L W. Genome-wide identification and functional characterization of the cation proton antiporter(CPA)family related to salt stress response in radish( Raphanus sativus L.)[J]. International Journal of Molecular Sciences, 2020, 21(21):8262.doi: 10.3390/ijms21218262.
|
[41] |
|
|
Yang S M, Xie E J, Luo C F, Rao P, Ou Z G, Yang L. Identification and characteristics analysis of NHX gene family in Manihot esculenta[J]. Guizhou Agricultural Sciences, 2024, 52(8):19-26.
|
[42] |
Parveen K, Abu Bakar Saddique M, Rehman S U, Ali Z, Aziz I, Shamsi I H, Muneer M A. Identification and characterization of salt stress-responsive NHX gene family in chickpea[J]. Plant Stress, 2023, 10:100266.doi: 10.1016/j.stress.2023.100266.
|
[43] |
|
|
Qiu Q S. Arabidopsis NHX5 and NHX6:ion homeostasis and protein transport[J]. Scientia Sinica(Vitae), 2017, 47(8):839-846.
|
[44] |
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants:the molecular point of view[J]. Plant Cell Reports, 2021, 40(8):1471-1494.doi: 10.1007/s00299-021-02687-4.
pmid: 33821356
|
[45] |
Pan J J, Hu Y R, Wang H P, Guo Q, Chen Y N, Howe G A, Yu D Q. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis[J]. The Plant Cell, 2020, 32(12):3846-3865.doi: 10.1105/tpc.19.00838.
|
[46] |
|
|
Gao Y L, Song Z B, Li M Y, Li W Z, Wang B W, Li Y P. Cloning and expression characteristics of tobacco NtNHX1-3 gene[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(12):2201-2206.
|
[47] |
|
|
Liu J X, Zhu J F, Yang X Y, Zhang H L, Zhang H X. Genome identification and expression analysis of NHX gene family in woody halophyte Nitraria sibirica[J]. Genomics and Applied Biology, 2023, 42(7):698-714.
|
[48] |
Wu G Q, Wang J L, Li S J. Genome-wide identification of Na +/H + antiporter(NHX)genes in sugar beet( Beta vulgaris L.) and their regulated expression under salt stress[J]. Genes, 2019, 10(5):401.doi: 10.3390/genes10050401.
|