[1] |
Sun J, Yang L, Zhao F Q, Wu W B. Domestic dynamics of crop production in response to international food trade:evidence from soybean imports in China[J]. Journal of Land Use Science, 2020, 15(1):91-98.doi: 10.1080/1747423x.2020.1742811.
|
[2] |
Yan H R, Chen Y Y, Bun K H. China's soybean crisis:the logic of modernization and its discontents[J]. The Journal of Peasant Studies, 2016, 43(2):373-395.doi: 10.1080/03066150.2015.1132205.
|
[3] |
|
|
Liu L L, Li J F, Shu Y, Chen X Y, Tang G X. Current situation of soybean production and consumption in China and strategies to improve self-sufficiency rate[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(2):242-248.
|
[4] |
Frisvold G B, Sullivan J, Raneses A. Genetic improvements in major US crops:the size and distribution of benefits[J]. Agricultural Economics, 2003, 28(2):109-119.doi: 10.1111/j.1574-0862.2003.tb00245.x.
|
[5] |
Wang Y, Wang H, Guo S B. Research on dynamic game model and application of China's imported soybean price in the context of China-US economic and trade friction[J]. Complexity, 2019(1):1-13.doi: 10.1155/2019/6048186.
|
[6] |
Huang J K, Wei W, Cui Q, Xie W. The prospects for China's food security and imports:will China starve the world via imports?[J]. Journal of Integrative Agriculture, 2017, 16(12):2933-2944.doi: 10.1016/s2095-3119(17)61756-8.
|
[7] |
蒙寒梦. 中国大豆产业国际竞争力研究[D]. 北京: 北京第二外国语学院, 2013.
|
|
Meng H M. Study on international competitiveness of soybean industry in china[D]. Beijing: Beijing International Studies University, 2013.
|
[8] |
Chen Y Y, Lu C H. Future grain consumption trends and implications on grain security in China[J]. Sustainability, 2019, 11(19):5165.doi: 10.3390/su11195165.
|
[9] |
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206.doi: 10.1016/s1360-1385(00)01600-9.
pmid: 10785665
|
[10] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258.doi: 10.1016/j.tplants.2010.02.006.
pmid: 20304701
|
[11] |
Wang H P, Chen W Q, Xu Z Y, Chen M F, Yu D Q. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science, 2023, 28(6):630-645.doi: 10.1016/j.tplants.2022.12.012.
pmid: 36628655
|
[12] |
Yu Y C, Qi Y N, Xu J P, Dai X H, Chen J C, Dong C H, Xiang F N. Arabidopsis WRKY71 regulates ethylene-mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes[J]. The Plant Journal, 2021, 107(6):1819-1836.doi: 10.1111/tpj.15433.
|
[13] |
|
|
Wang S Y, Wu G Q, Wei M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses[J]. Chinese Journal of Biotechnology, 2024, 40(1):35-52.
|
[14] |
Jiang Y J, Qiu Y P, Hu Y R, Yu D Q. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa[J]. Frontiers in Plant Science, 2016, 7:145.doi: 10.3389/fpls.2016.00145.
|
[15] |
Song Y, Chen L G, Zhang L P, Yu D Q. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis[J]. Journal of Biosciences, 2010, 35(3):459-471.doi: 10.1007/s12038-010-0051-1.
pmid: 20826955
|
[16] |
Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal, 2015, 83(2):224-236.doi: 10.1111/tpj.12879.
pmid: 25990284
|
[17] |
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5):486-503.doi: 10.1111/j.1467-7652.2008.00336.x.
|
[18] |
Yu Y C, Wang L, Chen J C, Liu Z H, Park C M, Xiang F N. WRKY71 acts antagonistically against salt-delayed flowering in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2018, 59(2):414-422.doi: 10.1093/pcp/pcx201.
|
[19] |
Guo D S, Zhang J Z, Wang X L, Han X, Wei B Y, Wang J Q, Li B X, Yu H, Huang Q P, Gu H Y, Qu L J, Qin G J. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis[J]. The Plant Cell, 2015, 27(11):3112-3127.doi: 10.1105/tpc.15.00829.
|
[20] |
|
|
Xu J P, Qi Y N, Yu Y C. Effects of salt and drought stresses on seed germination of Arabidopsis WRKY71 gene mutant[J]. Shandong Agricultural Sciences, 2020, 52(3):34-37.
|
[21] |
|
|
Chen F Y, Long X Q, Nie C, He J Z, Yang L, Hu H, Wang W J, Zhu Q K. Effects of transcription factor WRKY71 on root development of Arabidopsis thaliana[J]. Plant Physiology Journal, 2022, 58(2):363-370.
|
[22] |
Yu Y C, Wang N, Hu R B, Xiang F N. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. SpringerPlus, 2016, 5(1):920.doi: 10.1186/s40064-016-2647-x.
pmid: 27386364
|
[23] |
Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiology, 2005, 137(1):176-189.doi: 10.1104/pp.104.054312.
pmid: 15618416
|
[24] |
Yu Y C, Liu Z H, Wang L, Kim S G, Seo P J, Qiao M, Wang N, Li S, Cao X F, Park C M, Xiang F N. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1):96-106.doi: 10.1111/tpj.13092.
|
[25] |
|
|
He F, Du H Y, Liu P F, Wang L, Qing J, Du L Y. Effects of drought stress on leaf structure of Eucommia ulmoides[J]. Bulletin of Botanical Research, 2021, 41(6):947-956.
|
[26] |
|
|
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology:a decade update[J]. Plant Physiology Journal, 2024, 60(2):248-270.
|
[27] |
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling:the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309.doi: 10.1016/j.tplants.2011.03.007.
pmid: 21482172
|
[28] |
Gilroy S, Suzuki N, Miller G, Choi W G, Toyota M, Devireddy A R, Mittler R. A tidal wave of signals:calcium and ROS at the forefront of rapid systemic signaling[J]. Trends in Plant Science, 2014, 19(10):623-630.doi: 10.1016/j.tplants.2014.06.013.
pmid: 25088679
|
[29] |
|
|
Gao Z Q, Tang Y C, Zheng L L, Wang Y C. Heterologous overexpression of NtCIPK5 improves the tolerance to salt and drought stresses in Arabidopsis thaliana[J]. Plant Physiology Journal, 2023, 59(12):2320-2332.
|
[30] |
Wang C, Deng P Y, Chen L L, Wang X T, Ma H, Hu W, Yao N C, Feng Y, Chai R H, Yang G X, He G Y. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2013, 8(6):e65120.doi: 10.1371/journal.pone.0065120.
|
[31] |
Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19(12):4087.doi: 10.3390/ijms19124087.
|