[1] |
Ayalew W, Chu M, Liang C N, Wu X Y, Yan P. Adaptation mechanisms of yak( Bos grunniens)to high-altitude environmental stress[J]. Animals, 2021, 11(8):2344.doi: 10.3390/ani11082344.
|
[2] |
Jing X P, Ding L M, Zhou J W, Huang X D, Degen A, Long R J. The adaptive strategies of yaks to live in the Asian Highlands[J]. Animal Nutrition, 2022, 9:249-258.doi: 10.1016/j.aninu.2022.02.002.
pmid: 35600551
|
[3] |
|
|
Shao F L. Study on breeding strategy of Jiulong yak[J]. Livestock and Poultry Industry, 2022, 33(7):39-41.
|
[4] |
李铸, 何世明, 吴锦波, 艾鷖, 蹇尚林, 吴伟生. 麦洼牦牛高产奶选育群牛乳体细胞数与乳成分的相关分析[J]. 四川畜牧兽医, 2018, 45(4):31-33,36.
|
|
Li Z, He S M, Wu J B, Ai Y, Jian S L, Wu W S. The correlation analysis between somatic cell counts and milk compositions in raw yak[J]. Sichuan Animal & Veterinary Sciences, 2018, 45(4):31-33,36.
|
[5] |
Li X T, Zhang J, Kong X L, Xerenbek T, Mamet T. Yak( Bos grunniens)milk improves bone mass and microarchitecture in mice with osteoporosis[J]. Journal of Dairy Science, 2022, 105(10):7878-7890.doi: 10.3168/jds.2022-21880.
|
[6] |
Sapkota S, Acharya K P, Laven R, Acharya N. Possible consequences of climate change on survival,productivity and reproductive performance,and welfare of Himalayan yak( Bos grunniens)[J]. Veterinary Sciences, 2022, 9(8):449.doi: 10.3390/vetsci9080449.
|
[7] |
户林其, 沈宜钊, 李妍, 王美美, 张海博, 郭刚, 申跃宇, 李建国, 高艳霞, 李素霞, 王颖. 饲粮中棕榈酸与油酸的比例对泌乳早期奶牛瘤胃发酵参数与菌群组成的影响[J]. 动物营养学报, 2022, 34(8):5094-5106.doi: 10.3969/j.issn.1006-267x.2022.08.033.
|
|
Hu L Q, Shen Y Z, Li Y, Wang M M, Zhang H B, Guo G, Shen Y Y, Li J G, Gao Y X, Li S X, Wang Y. Effects of dietary palmitic acid to oleic acid ratio on rumen fermentation parameters and bacterial community composition of early lactation dairy cows[J]. Chinese Journal of Animal Nutrition, 2022, 34(8):5094-5106.
doi: 10.3969/j.issn.1006-267x.2022.08.033
|
[8] |
|
|
Xie X Y, Sun W C, Luo Y H. Fatty acid identification and its application in yak milk and yak meat quality analysis[J]. China Oils and Fats, 2021, 46(3):134-141.
|
[9] |
Guillou H, Zadravec D, Martin P G P, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism:insights from transgenic mice[J]. Progress in Lipid Research, 2010, 49(2):186-199.doi: 10.1016/j.plipres.2009.12.002.
pmid: 20018209
|
[10] |
Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals:their regulation and roles in metabolism[J]. Progress in Lipid Research, 2006, 45(3):237-249.doi: 10.1016/j.plipres.2006.01.004.
pmid: 16564093
|
[11] |
|
[12] |
Lai K Z H, Yehia N A, Semnani-Azad Z, Mejia S B, Boucher B A, Malik V, Bazinet R P, Hanley A J. Lifestyle factors associated with circulating very long-chain saturated fatty acids in humans:a systematic review of observational studies[J]. Advances in Nutrition, 2023, 14(1):99-114.doi: 10.1016/j.advnut.2022.10.004.
|
[13] |
Westerberg R, Månsson J E, Golozoubova V, Shabalina I G, Backlund E C, Tvrdik P, Retterstøl K, Capecchi M R, Jacobsson A. ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue[J]. The Journal of Biological Chemistry, 2006, 281(8):4958-4968.doi: 10.1074/jbc.M511588200.
|
[14] |
Denic V, Weissman J S. A molecular caliper mechanism for determining very long-chain fatty acid length[J]. Cell, 2007, 130(4):663-677.doi: 10.1016/j.cell.2007.06.031.
pmid: 17719544
|
[15] |
Chen H T, Gao L, Yang D, Xiao Y Y, Zhang M H, Li C M, Wang A H, Jin Y P. Coordination between the circadian clock and androgen signaling is required to sustain rhythmic expression of Elovl3 in mouse liver[J]. Journal of Biological Chemistry, 2019, 294(17):7046-7056.doi: 10.1074/jbc.RA118.005950.
|
[16] |
Liu D, Xu J H, Tong H L, Li S F, Yan Y Q. Effect of ELOVL3 expression on bovine skeletal muscle-derived satellite cell differentiation[J]. Biochemical and Biophysical Research Communications, 2017, 493(4):1457-1463.doi: 10.1016/j.bbrc.2017.07.118.
pmid: 28780350
|
[17] |
|
|
Xu J H. Fatty acids promote the differentiation of bovine muscle satellite cells through ELOVL3[D]. Harbin: Northeast Agricultural University, 2018.
|
[18] |
Wang D D, Li X Y, Zhang P P, Cao Y Z, Zhang K, Qin P P, Guo Y L, Li Z J, Tian Y D, Kang X T, Liu X J, Li H. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken( Gallus gallus)[J]. BMC Genomics, 2022, 23(1):705.doi: 10.1186/s12864-022-08932-8.
|
[19] |
Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription?[J]. Biochemical Pharmacology, 2002, 64(5/6):893-901.doi: 10.1016/s0006-2952(02)01157-7.
|
[20] |
Oh C S, Toke D A, Mandala S, Martin C E. ELO2 and ELO3,homologues of the Saccharomyces cerevisiae ELO1 gene,function in fatty acid elongation and are required for sphingolipid formation[J]. Journal of Biological Chemistry, 1997, 272(28):17376-17384.doi: 10.1074/jbc.272.28.17376.
pmid: 9211877
|
[21] |
Moon Y A, Shah N A, Mohapatra S, Warrington J A, Horton J D. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins[J]. Journal of Biological Chemistry, 2001, 276(48):45358-45366.doi: 10.1074/jbc.M108413200.
pmid: 11567032
|
[22] |
Cao H M, Gerhold K, Mayers J R, Wiest M M, Watkins S M, Hotamisligil G S. Identification of a lipokine,a lipid hormone linking adipose tissue to systemic metabolism[J]. Cell, 2008, 134(6):933-944.doi: 10.1016/j.cell.2008.07.048.
|
[23] |
Zhang Y M, Rock C O. Transcriptional regulation in bacterial membrane lipid synthesis[J]. Journal of Lipid Research, 2009, 50(S1):S115-S119.doi: 10.1194/jlr.R800046-JLR200.
|
[24] |
Ikeda M, Kanao Y, Yamanaka M, Sakuraba H, Mizutani Y, Igarashi Y, Kihara A. Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis[J]. FEBS Letters, 2008, 582(16):2435-2440.doi: 10.1016/j.febslet.2008.06.007.
pmid: 18554506
|
[25] |
Butovich I A, Wilkerson A, Bhat N, McMahon A, Yuksel S. On the pivotal role of Elovl3/ELOVL3 in meibogenesis and ocular physiology of mice[J]. The FASEB Journal, 2019, 33(9):10034-10048.doi: 10.1096/fj.201900725r.
|
[26] |
Ji L J, Gupta M, Feldman B J. Vitamin D regulates fatty acid composition in subcutaneous adipose tissue through Elovl3[J]. Endocrinology, 2016, 157(1):91-97.doi: 10.1210/en.2015-1674.
pmid: 26488808
|
[27] |
Qualmann B, Kessels M M. The role of protein arginine methylation as post-translational modification on actin cytoskeletal components in neuronal structure and function[J]. Cells, 2021, 10(5):1079.doi: 10.3390/cells10051079.
|
[28] |
Sonnendecker C, Wei R, Kurze E, Wang J P, Oeser T, Zimmermann W. Efficient extracellular recombinant production and purification of a Bacillus cyclodextrin glucanotransferase in Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1):87.doi: 10.1186/s12934-017-0701-1.
pmid: 28526016
|
[29] |
王蓝晨, 唐勤敏, 何宇锋, 王颖, 杨仕赛, 朱贵明. Elovl5转基因果蝇产生更长链的脂肪酸[J]. 生物工程学报, 2020, 36(10):2171-2180.doi: 10.13345/j.cjb.200053.
|
|
Wang L C, Tang Q M, He Y F, Wang Y, Yang S S, Zhu G M. Transgenesis of Drosophila melanogaster with an Elovl5 gene enables the production of longer-chain fatty acids[J]. Chinese Journal of Biotechnology, 2020, 36(10):2171-2180.
|
[30] |
Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H, Itohara S, Kihara A. Impaired epidermal permeability barrier in mice lacking Elovl1,the gene responsible for very-long-chain fatty acid production[J]. Molecular and Cellular Biology, 2013, 33(14):2787-2796.doi: 10.1128/MCB.00192-13.
|
[31] |
Wang Q Q, Chen Q, Zhang Y X, Zhang X, Liu C Y, Wang D Q, Wu Y H, Sun Y X, Zhang L, Song C C, Wang Y M, An Y P, Tang H R, Xu C J, Wu Y T, Jin L, Huang H F, Zhang F. HSD17B12 dosage insufficiency induced premature ovarian insufficiency in humans and mice[J]. Clinical and Translational Medicine, 2022, 12(2):e737.doi: 10.1002/ctm2.737.
pmid: 35187845
|
[32] |
|
|
Ni B, Zhu L, Gao L C, Nimacangjue, Pubuquzhen, Gou X, Kong X Y, Basangzhuzha. Physiological and genetic molecular mechanisms of plateau adaptation in the yak[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(23):13-20,130.
|
[33] |
Durmowicz A G, Hofmeister S, Kadyraliev T K, Aldashev A A, Stenmark K R. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude[J]. Journal of Applied Physiology, 1993, 74(5):2276-2285.doi: 10.1152/jappl.1993.74.5.2276.
pmid: 8335557
|
[34] |
Qi X B, Zhang Q, He Y X, Yang L X, Zhang X M, Shi P, Yang L P, Liu Z H, Zhang F H, Liu F Y, Liu S M, Wu T Y, Cui C Y, Ouzhuluobu, Bai C J, Baimakangzhuo, Han J L, Zhao S G, Liang C N, Su B. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation[J]. Genome Biology and Evolution, 2019, 11(1):72-85.doi: 10.1093/gbe/evy264.
pmid: 30517636
|