[1] |
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.doi: 10.1126/science.290.5499.2105.
pmid: 11118137
|
[2] |
Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors-light,stress and development[J]. Trends in Plant Science, 2012, 17(3):163-171.doi: 10.1016/j.tplants.2011.12.002.
pmid: 22236699
|
[3] |
Green P J, Kay S A, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene[J]. The EMBO Journal, 1987, 6(9):2543-2549.doi: 10.1002/j.1460-2075.1987.tb02542.x.
|
[4] |
Li J M, Zhang M H, Sun J, Mao X R, Wang J, Wang J G, Liu H L, Zheng H L, Zhen Z, Zhao H W, Zou D T. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice( Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2019, 20(2):251.doi: 10.3390/ijms20020251.
|
[5] |
Li K Y, Fan Y, Zhou G Y, Liu X J, Chen S S, Chang X C, Wu W Q, Duan L L, Yao M X, Wang R, Wang Z L, Yang M F, Ding Y Q, Ren M J, Fan Y, Zhang L Y. Genome-wide identification,phylogenetic analysis,and expression profiles of trihelix transcription factor family genes in quinoa( Chenopodium quinoa Willd.) under abiotic stress conditions[J]. BMC Genomics, 2022, 23(1):499.doi: 10.1186/s12864-022-08726-y.
|
[6] |
|
|
Zheng L, Li M D. Identification and bioinformatics analysis of trihelix transcription factor in melon[J]. Jiangsu Agricultural Sciences, 2022, 50(16):44-49.
|
[7] |
|
|
Fu M J. Bioinformatics analysis of trihelix gene family in Solanum lycopersicum[J]. Molecular Plant Breeding, 2023, 21(5):1408-1417.
|
[8] |
Zhu L, Hu J, Li R Q, Liu C, Jiang Y, Liu T, Liu M M, Zhao M Z, Wang Y, Wang K Y, Zhang M P. Transcriptome-wide integrated analysis of the PgGT25-04 gene in controlling ginsenoside biosynthesis in Panax ginseng[J]. Plants, 2023, 12(10):1980.doi: 10.3390/plants12101980.
|
[9] |
Hu J, Liu T, Huo H M, Liu S Z, Liu M M, Liu C, Zhao M Z, Wang K Y, Wang Y, Zhang M P. Genome-wide characterization,evolutionary analysis,and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng[J]. BMC Plant Biology, 2023, 23(1):376.doi: 10.1186/s12870-023-04390-w.
|
[10] |
Tong Y, Huang H, Wang Y H. Genome-wide analysis of the trihelix gene family and their response to cold stress in Dendrobium officinale[J]. Sustainability, 2021, 13(5):2826.doi: 10.3390/su13052826.
|
[11] |
Wang J, Ouyang Y W, Wei Y Z, Kou J J, Zhang X H, Zhang H N. Identification and characterization of trihelix transcription factors and expression changes during flower development in pineapple[J]. Horticulturae, 2022, 8(10):894.doi: 10.3390/horticulturae8100894.
|
[12] |
Zhao D B, Gao F J, Guan P Y, Gao J S, Guo Z H, Guo J J, Cui H N, Li Y J, Zhang G J, Li Z, Guo L H. Identification and analysis of differentially expressed trihelix genes in maize( Zea mays)under abiotic stresses[J]. PeerJ, 2023,11:e15312.doi: 10.7717/peerj.15312.
|
[13] |
Zhao Y Y, Liang J C, Wang Z Q, Yan T X, Yan X W, Wei W L, Le M W, Sun J. Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame( Sesamum indicum L.) under abiotic stress[J]. Molecular Biology Reports, 2023, 50(10):8281-8295.doi: 10.1007/s11033-023-08640-w.
|
[14] |
Lang Z L, Xu Z L, Li L Y, He Y Q, Zhao Y, Zhang C, Hong G J, Zhang X Y. Comprehensive genomic analysis of trihelix family in tea plant( Camellia sinensis)and their putative roles in osmotic stress[J]. Plants, 2023, 13(1):70.doi: 10.3390/plants13010070.
|
[15] |
Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, Kaplan-Levy R N, Kilinc A, Smyth D R. PETAL LOSS,a trihelix transcription factor gene,regulates perianth architecture in the Arabidopsis flower[J]. Development, 2004, 131(16):4035-4045.doi: 10.1242/dev.01279.
|
[16] |
Li P, Li Z X, Xie G N, Zhang J R. Trihelix transcription factor ZmThx20 is required for kernel development in maize[J]. International Journal of Molecular Sciences, 2021, 22(22):12137.doi: 10.3390/ijms222212137.
|
[17] |
Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaeda liaotungensis K[J]. Plant Cell Reports, 2008, 27(3):585-592.doi: 10.1007/s00299-007-0459-8.
pmid: 17924116
|
[18] |
Zhang Q Q, Zhong T, Lizhu E, Xu M L, Dai W X, Sun S C, Ye J R. GT factor ZmGT-3b is associated with regulation of photosynthesis and defense response to Fusarium graminearum infection in maize seedling[J]. Frontiers in Plant Science, 2021,12:724133.doi: 10.3389/fpls.2021.724133.
|
[19] |
中国药典[S].一部.中国医药科技出版社. 北京, 2020.
|
|
Chinese Pharmacopoeia[S].Part One.China Medical Science and Technology Press. Beijing, 2020.
|
[20] |
Swamy M K, Sinniah U R. Patchouli( Pogostemon cablin Benth.):botany,agrotechnology and biotechnological aspects[J]. Industrial Crops and Products, 2016, 87:161-176.doi: 10.1016/j.indcrop.2016.04.032.
|
[21] |
Van Beek T A, Daniel J. The essential oil of patchouli, Pogostemon cablin:a review[J]. Flavour and Fragrance Journal, 2017, 33(1):6-51.doi: 10.1002/ffj.3418.
|
[22] |
|
|
He G Z, Li J K, Gao W, Su J, Chen W W. The strategy to promote the development of planting industry of Pogostemon cablin in Guangdong Province[J]. Chinese Agricultural Science Bulletin, 2012, 28(31):288-292.
|
[23] |
Broun P. Transcription factors as tools for metabolic engineering in plants[J]. Current Opinion in Plant Biology, 2004, 7(2):202-209.doi: 10.1016/j.pbi.2004.01.013.
pmid: 15003222
|
[24] |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展[J]. 植物学报, 2020, 55(3):340-350.doi: 10.11983/CBB19186.
|
|
Dong Y M, Zhang W Y, Ling Z Y, Li J R, Bai H T, Li H, Shi L. Advances in transcription factors regulating plant terpenoids biosynthesis[J]. Chinese Bulletin of Botany, 2020, 55(3):340-350.
|
[25] |
Chen X Z, Li J R, Liu Y T, Wu D D, Huang H L, Zhan R T, Chen W W, Chen L K. PatSWC4,a methyl jasmonate-responsive MYB(v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor,positively regulates patchoulol biosynthesis in Pogostemon cablin[J]. Industrial Crops and Products, 2020,154:112672.doi: 10.1016/j.indcrop.2020.112672.
|
[26] |
Chen X Z, Wang X B, Wu D D, Li J R, Huang H L, Wang X L, Zhan R T, Chen L K. PatDREB transcription factor activates patchoulol synthase gene promoter and positively regulates jasmonate-induced patchoulol biosynthesis[J]. Journal of Agricultural and Food Chemistry, 2022, 70(23):7188-7201.doi: 10.1021/acs.jafc.2c01660.
pmid: 35654756
|
[27] |
Wang X B, Tang Y, Huang H L, Wu D D, Chen X Z, Li J R, Zheng H, Zhan R T, Chen L K. Functional analysis of Pogostemon cablin farnesyl pyrophosphate synthase gene and its binding transcription factor PcWRKY44 in regulating biosynthesis of patchouli alcohol[J]. Frontiers in Plant Science, 2022,13:946629.doi: 10.3389/fpls.2022.946629.
|
[28] |
Huang H L, Wu D D, Guo T Y, Zhang D H, Wang X L, Zhuang J X, Zou X, Gong L Z, Zhan R T, Chen L K. The PcbZIP44 transcription factor inhibits patchoulol synthase gene expression and negatively regulates patchoulol biosynthesis in Pogostemon cablin[J]. Industrial Crops and Products, 2022,188:115561.doi: 10.1016/j.indcrop.2022.115561.
|
[29] |
Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7):1565-1572.doi: 10.1038/nprot.2007.199.
|
[30] |
Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome[J]. The Plant Cell, 2009, 21(8):2307-2322.doi: 10.1105/tpc.109.068387.
|
[31] |
Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. The Plant Cell, 2010, 22(12):4128-4141.doi: 10.1105/tpc.110.078691.
|
[32] |
Weng H, Yoo C Y, Gosney M J, Hasegawa P M, Mickelbart M V. Poplar GTL1 is a Ca 2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PLoS One, 2012, 7(3):e32925.doi: 10.1371/journal.pone.0032925.
|
[33] |
Shibata M, Breuer C, Kawamura A, Clark N M, Rymen B, Braidwood L, Morohashi K, Busch W, Benfey P N, Sozzani R, Sugimoto K. GTL1 and DF1 regulate root hair growth through transcriptional repression of root hair defective 6-like 4 in Arabidopsis[J]. Development, 2018, 145(3):dev159707.doi: 10.1242/dev.159707.
|
[34] |
Xu H Y, Shi X X, He L, Guo Y, Zang D D, Li H Y, Zhang W H, Wang Y C. Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-box and some GT motifs[J]. Plant and Cell Physiology, 2018, 59(5):946-965.doi: 10.1093/pcp/pcy032.
|
[35] |
Yu C Y, Song L L, Song J W, Ouyang B, Guo L J, Shang L L, Wang T T, Li H X, Zhang J H, Ye Z B. ShCIGT,a trihelix family gene,mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science, 2018, 270:140-149.doi: 10.1016/j.plantsci.2018.02.012.
|
[36] |
Li Y, Hu Z Y, Dong Y M, Xie Z M. Trihelix transcriptional factor GhGT26 of cotton enhances salinity tolerance in Arabidopsis[J]. Plants, 2022, 11(20):2694.doi: 10.3390/plants11202694.
|
[37] |
Li Y, Hu Z Y, Dong Y M, Xie Z M. Overexpression of the cotton trihelix transcription factor GhGT23 in Arabidopsis mediates salt and drought stress tolerance by binding to GT and MYB promoter elements in stress-related genes[J]. Frontiers in Plant Science, 2023,14:1144650.doi: 10.3389/fpls.2023.1144650.
|
[38] |
高红艳, 刘俊, 宋笑龙, 孔波, 李雪平. 毛竹( Phyllostachys edulis) PheGT8和 PheGT16基因的克隆与表达分析[J]. 分子植物育种, 2020, 18(9):2842-2851.doi: 10.13271/j.mpb.018.002842.
|
|
Gao H Y, Liu J, Song X L, Kong B, Li X P. Cloning and expression analysis of PheGT8 and PheGT16 genes in moso bamboo(Phyllostachys edulis)[J]. Molecular Plant Breeding, 2020, 18(9):2842-2851.
|
[39] |
|
|
Cui B L, Chen Z P, Sun T T, Long J L, Wang X X, Zeng S J, Shi Y R. Expressions and responses to abiotic stresses and plant growth regulator of tomato GT-1[J]. Fujian Journal of Agricultural Sciences, 2023, 38(2):144-150.
|
[40] |
Lopes Cardoso M I, Meijer A H, Rueb S, Machado J Q, Memelink J A, Hoge J H C. A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene( Cpr)from Catharanthus roseus binds nuclear factor GT-1[J]. Molecular and General Genetics, 1997, 256(6):674-681.doi: 10.1007/PL00008617.
pmid: 9435792
|
[41] |
Fan M Z, Herburger K, Jensen J K, Zemelis-Durfee S, Brandizzi F, Fry S C, Wilkerson C G. A trihelix family transcription factor is associated with key genes in mixed-linkage glucan accumulation[J]. Plant Physiology, 2018, 178(3):1207-1221.doi: 10.1104/pp.18.00978.
pmid: 30224432
|
[42] |
Liu H F, Zhang T T, Liu Y Q, Liu R X, Zhang H Y, Rui L, Wang D R, Li C Y, Zhang S, You C X, Zhang Z L, Wang X F. The trihelix transcription factor MdSIP1-2 interacts with MdNIR1 promoter to regulate nitrate utilization in apple[J]. Environmental and Experimental Botany, 2024,220:105669.doi: 10.1016/j.envexpbot.2024.105669.
|
[43] |
Yang W Z, Hu J Y, Behera J R, Kilaru A, Yuan Y P, Zhai Y H, Xu Y F, Xie L H, Zhang Y L, Zhang Q Y, Niu L X. A tree peony trihelix transcription factor PrASIL1 represses seed oil accumulation[J]. Frontiers in Plant Science, 2021,12:796181.doi: 10.3389/fpls.2021.796181.
|
[44] |
Völz R, Kim S K, Mi J N, Mariappan K G, Guo X J, Bigeard J, Alejandro S, Pflieger D, Rayapuram N, Al-Babili S, Hirt H. The Trihelix transcription factor GT2-like 1(GTL1)promotes salicylic acid metabolism,and regulates bacterial-triggered immunity[J]. PLoS Genetics, 2018, 14(10):e1007708.doi: 10.1371/journal.pgen.1007708.
|