[1] |
Wade P A, Werel W, Fentzke R C, Thompson N E, Leykam J F, Burgess R R, Jaehning J A, Burton Z F. A novel collection of accessory factors associated with yeast RNA polymerase Ⅱ[J]. Protein Expression and Purification, 1996, 8(1): 85-90. doi: 10.1006/prep.1996.0077.
pmid: 8812838
|
[2] |
Francette A M, Tripplehorn S A, Arndt K M. The Paf1 complex: a keystone of nuclear regulation operating at the interface of transcription and chromatin[J]. Journal of Molecular Biology, 2021, 433(14): 166979. doi: 10.1016/j.jmb.2021.166979.
|
[3] |
Van Oss S B, Cucinotta C E, Arndt K M. Emerging insights into the roles of the Paf1 complex in gene regulation[J]. Trends in Biochemical Sciences, 2017, 42(10): 788-798. doi: 10.1016/j.tibs.2017.08.003.
pmid: 28870425
|
[4] |
Park J, Park S, Lee J S. Role of the Paf1 complex in the maintenance of stem cell pluripotency and development[J]. The FEBS Journal, 2023, 290(4): 951-961. doi: 10.1111/febs.16582.
|
[5] |
Kenaston M W, Shah P S. The archer and the prey: the duality of PAF1C in antiviral immunity[J]. Viruses, 2023, 15(5): 1032. doi: 10.3390/v15051032.
|
[6] |
Obermeyer S, Kapoor H, Markusch H, Grasser K D. Transcript elongation by RNA polymerase Ⅱ in plants: factors, regulation and impact on gene expression[J]. The Plant Journal, 2024, 118(3): 645-656. doi: 10.1111/tpj.16115.
|
[7] |
Fal K, Cortes M, Liu M Y, Collaudin S, Das P, Hamant O, Trehin C. Paf1c defects challenge the robustness of flower meristem termination in Arabidopsis thaliana[J]. Development, 2019, 146(20): dev173377. doi: 10.1242/dev.173377.
|
[8] |
Li R Q, Wei Z F, Li Y, Shang X D, Cao Y, Duan L S, Ma L G. SKI-INTERACTING PROTEIN interacts with SHOOT MERISTEMLESS to regulate shoot apical meristem formation[J]. Plant Physiology, 2022, 189(4): 2193-2209. doi: 10.1093/plphys/kiac241.
|
[9] |
Liu Y X, Geyer R, van Zanten M, Carles A, Li Y, Hörold A, van Nocker S, Soppe W J J. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy[J]. PLoS One, 2011, 6(7): e22241. doi: 10.1371/journal.pone.0022241.
|
[10] |
Zhao F Y, Xue M D, Zhang H R, Li H, Zhao T, Jiang D H. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis[J]. New Phytologist, 2023, 238(2): 750-764. doi: 10.1111/nph.18738.
|
[11] |
Singh S, Kailasam S, Lo J C, Yeh K C. Histone H 3 lysine4 trimethylation-regulated GRF11 expression is essential for the iron-deficiency response in Arabidopsis thaliana[J]. New Phytologist, 2021, 230(1): 244-258. doi: 10.1111/nph.17130.
|
[12] |
Li C L, Guo Y Y, Wang L L, Yan S P. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis[J]. The EMBO Journal, 2023, 42(7): e112756. doi: 10.15252/embj.2022112756.
|
[13] |
He Y H, Doyle M R, Amasino R M. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis[J]. Genes & Development, 2004, 18(22): 2774-2784. doi: 10.1101/gad.1244504.
|
[14] |
Cao Y, Wen L G, Wang Z, Ma L G. SKIP interacts with the Paf1 complex to regulate flowering via the activation of FLC transcription in Arabidopsis[J]. Molecular Plant, 2015, 8(12): 1816-1819. doi: 10.1016/j.molp.2015.09.004.
|
[15] |
Nasim Z, Susila H, Jin S, Youn G, Ahn J H. Polymerase II-associated factor 1 complex-regulated FLOWERING LOCUS C-clade genes repress flowering in response to chilling[J]. Frontiers in Plant Science, 2022, 13: 817356. doi: 10.3389/fpls.2022.817356.
|
[16] |
Obermeyer S, Stöckl R, Schnekenburger T, Moehle C, Schwartz U, Grasser K D. Distinct role of subunits of the Arabidopsis RNA polymerase Ⅱ elongation factor PAF1C in transcriptional reprogramming[J]. Frontiers in Plant Science, 2022, 13: 974625. doi: 10.3389/fpls.2022.974625.
|
[17] |
Zhang H R, Li X Y, Song R T, Zhan Z P, Zhao F Y, Li Z C, Jiang D H. Cap-binding complex assists RNA polymerase Ⅱ transcription in plant salt stress response[J]. Plant, Cell & Environment, 2022, 45(9): 2780-2793. doi: 10.1111/pce.14388.
|
[18] |
Kim J H, Kim M S, Prasad D, Jung W J, Seo Y W. Molecular characterization of the wheat putative proline-rich protein TaELF7 and its involvement in the negative regulation of Arabidopsis flowering[J]. Journal of Plant Physiology, 2021, 262: 153439. doi: 10.1016/j.jplph.2021.153439.
|
[19] |
|
|
Zheng C J, Song Z W, Yang J J, Zhang B, Ai P H. Genome-wide identification and expression analysis of PYL gene family in Chrysanthemum nankingense[J]. Tianjin Agricultural Sciences, 2024, 30(8): 9-17, 26.
|
[20] |
Nelson B K, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants[J]. The Plant Journal, 2007, 51(6): 1126-1136. doi: 10.1111/j.1365-313X.2007.03212.x.
|
[21] |
Lee L Y, Kononov M E, Bassuner B, Frame B R, Wang K, Gelvin S B. Novel plant transformation vectors containing the superpromoter[J]. Plant Physiology, 2007, 145(4): 1294-1300. doi: 10.1104/pp.107.106633.
|
[22] |
|
|
Du X M, Wang J, An Z X, Pei D, Wang H Z. Factors influencing the preparation of wheat mesophyll protoplasts and the application of wheat mesophyll protoplasts in gene transient expression[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 52-60.
|
[23] |
Dorcey E, Rodriguez-Villalon A, Salinas P, Santuari L, Pradervand S, Harshman K, Hardtke C S. Context-dependent dual role of SKI8 homologs in mRNA synthesis and turnover[J]. PLoS Genetics, 2012, 8(4): e1002652. doi: 10.1371/journal.pgen.1002652.
|
[24] |
Zheng H C, Xue H, Zhang C Y. The roles of the tumor suppressor parafibromin in cancer[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 1006400. doi: 10.3389/fcell.2022.1006400.
|
[25] |
Lange H K, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes[J]. The Plant Cell, 2022, 34(3): 967-988. doi: 10.1093/plcell/koab310.
|
[26] |
Antosz W, Pfab A, Ehrnsberger H F, Holzinger P, Köllen K, Mortensen S A, Bruckmann A, Schubert T, Längst G, Griesenbeck J, Schubert V, Grasser M, Grasser K D. The composition of the Arabidopsis RNA polymerase Ⅱ transcript elongation complex reveals the interplay between elongation and mRNA processing factors[J]. The Plant Cell, 2017, 29(4): 854-870. doi: 10.1105/tpc.16.00735.
|
[27] |
Shi X M, Finkelstein A, Wolf A J, Wade P A, Burton Z F, Jaehning J A. Paf1p, an RNA polymerase Ⅱ-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription[J]. Molecular and Cellular Biology, 1996, 16(2): 669-676. doi: 10.1128/MCB.16.2.669.
pmid: 8552095
|
[28] |
Betz J, Chang M, Washburn T, Porter S, Mueller C, Jaehning J. Phenotypic analysis of Paf1/RNA polymerase Ⅱ complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism[J]. Molecular Genetics and Genomics, 2002, 268(2): 272-285. doi: 10.1007/s00438-002-0752-8.
pmid: 12395202
|
[29] |
Kenaston M W, Pham O H, Petit M J, Shah P S. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks[J]. BMC Genomics, 2022, 23(1): 787. doi: 10.1186/s12864-022-09013-6.
pmid: 36451099
|