华北农学报 ›› 2025, Vol. 40 ›› Issue (2): 10-17. doi: 10.7668/hbnxb.20195463

所属专题: 玉米 苹果 生物技术

• 作物遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米ZmC4NADP-ME基因进化及功能分析

陈华峰1,2,3, 张家宁4, 张晓1, 袁月1, 刘秀峰1, 刘丹1,2,   

  1. 1 天津市农业科学院 农作物研究所,天津市农作物遗传育种重点实验室,天津 300384
    2 天津中天大地科技有限公司,天津 300384
    3 山东农业大学,山东 泰安 066000
    4 河北科技师范学院,河北省作物逆境生物学重点实验室,河北 秦皇岛 066000
  • 收稿日期:2024-09-27 出版日期:2025-05-12
  • 通讯作者:
    刘 丹(1989—),女,河北沧州人,正高级工程师,副研究员,博士,主要从事作物基因挖掘与功能验证研究。
  • 作者简介:

    陈华峰(1987—),男,山东泰安人,正高级工程师,博士,主要从事玉米遗传育种研究。

    陈华峰、张家宁为同等贡献作者。

  • 基金资助:
    天津市青年基金项目(23JCQNJC00640); 河北科技师范学院科学研究基金项目(2024YB020); 津甘双地科技特派员项目(24CXNL009); 2024年度中国博士后科学基金会与天津市联合资助项目(2024T023TJ)

Evolution and Functional Analysis of Maize Gene ZmC4NADP-ME

CHEN Huafeng1,2,3, ZHANG Jianing4, ZHANG Xiao1, YUAN Yue1, LIU Xiufeng1, LIU Dan1,2,   

  1. 1 Tianjin Crop Research Institute,Tianjin Academy of Agriculture Sciences, Tianjin Key Laboratory of Crop Genetics and Breeding,Tianjin 300384,China
    2 Tianjin Zhongtiandadi Technology Company Limited,Tianjin 300384,China
    3 Shandong Agricultural University,Tai'an 066000,China
    4 Hebei Normal University of Science & Technology,Hebei Key Laboratory of Crop Stress Biology,Qinhuangdao 066000,China
  • Received:2024-09-27 Published:2025-05-12

摘要:

为进一步了解光合作用关键基因的作用,获得了玉米光合作用暗反应限速酶编码基因ZmC4NADP-ME的功能缺失突变体(zmC4nadp-me)。通过构建不同物种同源基因的进化树,表明ZmC4NADP-ME及其同源基因在大多数植物中都是以多拷贝的形式存在,且不同同源基因间的表达模式不同。对zmC4nadp-me的表型分析发现,与野生型相比,zmC4nadp-me整株呈黄绿色,光照条件下,苗期叶片很快干枯死亡。对zmC4nadp-me叶片的叶绿素荧光分析发现,Y(Ⅱ)及电子传递速率ETR(Ⅱ)显著降低,Y(NPQ)变化较小;但Y(NO)值显著升高;对zmC4nadp-me的PS Ⅰ吸收能力(P700)进行测定后发现,zmC4nadp-me电子传递速率ETR(Ⅰ)和实际光电子效率Y(Ⅰ)均出现了大幅下降,并且伴随着光照强度的增强,差距越来越显著;光照强度小于870 μmol/(m2·s)时,zmC4nadp-me的Y(ND)大于对照,当光照强度大于227 μmol/(m2·s),zmC4nadp-me的Y(NA)也开始逐渐大于WT。以上结果表明,ZmC4NADP-ME对植物生长发育是必需的,当该基因被破坏后,PSⅡ遭到了严重胁迫,而且在任何光照强度下,植株都无法通过提高Y(NPQ)来缓解这种抑制。同时,说明当光照低于一定强度时,来自PSⅠ电子供体侧的抑制可能是造成PSⅠ抑制的原因之一,而随着光照的增强,PSⅠ电子受体侧的抑制逐渐成为抑制PSⅠ的重要因素。

关键词: 玉米, 光合作用, 苹果酸酶, 光合系统Ⅰ, 光合系统Ⅱ

Abstract:

To explore the function of key genes in photosynthesis, a functional knockout mutant (zmC4nadp-me) of ZmC4NADP-ME, the gene encoding the rate-limiting enzyme of the dark reaction of photosynthesis in maize, was obtained. Evolutionary tree analysis showed that ZmC4NADP-ME and its homologous genes exist in multiple copies in most plants, with diverse expression patterns. Phenotypic analysis revealed that the entire zmC4nadp-me plant was yellow-green, and its seedling-stage leaves dried up and died rapidly under light. Chlorophyll fluorescence analysis indicated that Y(Ⅱ) and electron transport rate ETR(Ⅱ) of photosystem Ⅱ (PSⅡ) in zmC4nadp-me decreased significantly, with little change in Y(NPQ), while the Y(NO) increased notably. Measurement of the absorption capacity (P700) of photosystem Ⅰ (PSⅠ) found that both the electron transport rate (ETR(Ⅰ)) and the actual photoelectron efficiency (Y(Ⅰ)) of zmC4nadp-me dropped substantially, and the gap widened with increasing light intensity. Under specific light intensities, Y(ND) and Y(NA) of zmC4nadp-me were greater than those of the wild type (WT). In conclusion, ZmC4NADP-ME is essential for plant growth and development. Disruption of this gene severely stresses PSⅡ, and the plant can't alleviate this stress by increasing Y(NPQ). Meanwhile, at low light intensities, the inhibition of PSⅠ may originate from the electron donor side of PSⅠ, and as the light intensity increases, the inhibition from the electron acceptor side of PSⅠ becomes a key factor.

Key words: Maize, Photosynthesis, Malate enzyme, PS Ⅰ, PS Ⅱ

引用本文

陈华峰, 张家宁, 张晓, 袁月, 刘秀峰, 刘丹. 玉米ZmC4NADP-ME基因进化及功能分析[J]. 华北农学报, 2025, 40(2): 10-17. doi: 10.7668/hbnxb.20195463.

CHEN Huafeng, ZHANG Jianing, ZHANG Xiao, YUAN Yue, LIU Xiufeng, LIU Dan. Evolution and Functional Analysis of Maize Gene ZmC4NADP-ME[J]. Acta Agriculturae Boreali-Sinica, 2025, 40(2): 10-17. doi: 10.7668/hbnxb.20195463.