[1] |
|
|
Wang J X, Zhang A L, Qin M, Cao J M, Chen W, Guo R R. Effects of cadmium stress on photosynthetic characteristics and active oxygen metabolism of maize seedling[J]. Tianjin Agricultural Sciences, 2023, 29(1):1-6.
|
[2] |
Swift J, Luginbuehl L H, Hua L, Schreier T B, Donald R M, Stanley S, Wang N, Lee T A, Nery J R, Ecker J R, Hibberd J M. Exaptation of ancestral cell-identity networks enables C4 photosynthesis[J]. Nature, 2024, 636(8041):143-150.doi: 10.1038/s41586-024-08204-3.
|
[3] |
Aubry S, Brown N J, Hibberd J M. The role of proteins in C3 plants prior to their recruitment into the C4 pathway[J]. Journal of Experimental Botany, 2011, 62(9):3049-3059.doi: 10.1093/jxb/err012.
|
[4] |
Langdale J A, Zelitch I, Miller E, Nelson T. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize[J]. The EMBO Journal, 1988, 7(12): 3643-3651. doi: 10.1002/j.1460-2075.1988.tb03245.x.
|
[5] |
Langdale J A.C 4 cycles:past,present,and future research on C4 photosynthesis[J]. The Plant Cell, 2011, 23(11):3879-3892.doi: 10.1105/tpc.111.092098.
pmid: 22128120
|
[6] |
Zhao H L, Wang Y, Lyu M A, Zhu X G. Two major metabolic factors for an efficient NADP-malic enzyme type C4 photosynthesis[J]. Plant Physiology, 2022, 189(1):84-98.doi: 10.1093/plphys/kiac051.
|
[7] |
Bellasio C, Lundgren M R. The operation of PEPCK increases light harvesting plasticity in C4 NAD ME and NADP ME photosynthetic subtypes:a theoretical study[J]. Plant,Cell & Environment, 2024, 47(6):2288-2309.doi: 10.1111/pce.14869.
|
[8] |
Badia M B, Mans R, Lis A V, Tronconi M A, Arias C L, Maurino V G, Andreo C S, Drincovich M F, van Maris A J A, Gerrard Wheeler M C. Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces cerevisiae[J]. The FEBS Journal, 2017, 284(4):654-665.doi: 10.1111/febs.14013.
|
[9] |
Arias C L, Pavlovic T, Torcolese G, Badia M B, Gismondi M, Maurino V G, Andreo C S, Drincovich M F, Gerrard Wheeler M C, Saigo M. NADP-dependent malic enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2018, 9:1637.doi: 10.3389/fpls.2018.01637.
|
[10] |
|
|
Fu Z Y, Gou X Q, Zhang Z B, Xiao X W, Wang X J. The construction of plant overexpression vector of wheat TaNADP-ME2 gene and genetic transformation of rice[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(3):58-61.
|
[11] |
Badia M B, Maurino V G, Pavlovic T, Arias C L, Pagani M A, Andreo C S, Saigo M, Drincovich M F, Gerrard Wheeler M C. Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress[J]. The Plant Journal, 2020, 101(3):653-665.doi: 10.1111/tpj.14571.
|
[12] |
Brown N J, Palmer B G, Stanley S, Hajaji H, Janacek S H, Astley H M, Parsley K, Kajala K, Quick W P, Trenkamp S, Fernie A R, Maurino V G, Hibberd J M. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana,and are important in sugar and amino acid metabolism[J]. The Plant Journal, 2010, 61(1): 122-133. doi: 10.1111/j.1365-313x.2009.04040.x.
|
[13] |
Detarsio E, Maurino V G, Alvarez C E, Müller G L, Andreo C S, Drincovich M F. Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME):a phylogenetically distant isoform specifically expressed in embryo and emerging roots[J]. Plant Molecular Biology, 2008, 68(4):355-367.doi: 10.1007/s11103-008-9375-8.
|
[14] |
Voll L M, Zell M B, Engelsdorf T, Saur A, Wheeler M G, Drincovich M F, Weber A P M, Maurino V G. Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum[J]. New Phytologist, 2012, 195(1): 189-202. doi: 10.1111/j.1469-8137.2012.04129.x.
|
[15] |
Wheeler M C G, Tronconi M A, Drincovich M F, Andreo C S, Fluügge U I, Maurino V G. A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis[J]. Plant Physiology, 2005, 139(1):39-51.doi: 10.1104/pp.105.065953.
|
[16] |
Suzuki K, Ohmori Y, Ratel E. High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings[J]. Plant and Cell Physiology, 2011, 52(9):1697-1707.doi: 10.1093/pcp/pcr104.
pmid: 21803813
|
[17] |
|
|
Niu Y K, Li J Q, Qu J R, Li C Q, Wang X C, Tian T. Effects of iron stress on chlorophyll fluorescence and physiological characteristics of Potentilla anserina L.[J]. Tianjin Agricultural Sciences, 2022, 28(2):1-6.
|
[18] |
Tikkanen M, Grebe S. Switching off photoprotection of photosystem Ⅰ a novel tool for gradual PS Ⅰ photoinhibition[J]. Physiologia Plantarum, 2018, 162(2):156-161.doi: 10.1111/ppl.12618.
|
[19] |
Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668.doi: 10.1093/jxb/51.345.659.
pmid: 10938857
|
[20] |
|
|
Jiang X J, Jiang Y. Effects of different LED light quality on chlorophyll fluorescence,photosynthetic parameters and SPAD in cucumber leaves[J]. Tianjin Agricultural Sciences, 2019, 25(9):7-9.
|
[21] |
Earl H J, Ennahli S. Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem Ⅱ light saturation[J]. Photosynthesis Research, 2004, 82(2):177-186.doi: 10.1007/s11120-004-1454-3.
|
[22] |
Chen H F, Qin L, Tian J G, Wang X L. Identification and evolutionary analysis of the GOLDEN 2-LIKE gene family in foxtail millet[J]. Tropical Plant Biology, 2022, 15(4):301-318.doi: 10.1007/s12042-022-09324-8.
|
[23] |
Hall B G. Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5):1229-1235.doi: 10.1093/molbev/mst012.
pmid: 23486614
|
[24] |
Wang Y P, Tang H B, DeBarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7):e49.doi: 10.1093/nar/gkr1293.
|
[25] |
Dong P F, Tu X Y, Chu P Y, Lyu P T, Zhu N, Grierson D, Du B J, Li P H, Zhong S L. 3D chromatin architecture of large plant genomes determined by local A/B compartments[J]. Molecular Plant, 2017, 10(12):1497-1509.doi: 10.1016/j.molp.2017.11.005.
pmid: 29175436
|
[26] |
Seader V H, Thornsberry J M, Carey R E. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins[J]. Journal of Plant Research, 2016, 129(2):199-207.doi: 10.1007/s10265-015-0772-1.
|
[27] |
Project A G, Albert V A, Barbazuk W B, de Pamphilis C W, Der J P, Leebens-Mack J, et al. The Amborella genome and the evolution of flowering plants[J]. Science, 2013, 342(6165):1241089.doi: 10.1126/science.1241089.
|
[28] |
Zhang Y L, Giuliani R, Zhang Y J, Zhang Y, Araujo W L, Wang B C, Liu P, Sun Q, Cousins A, Edwards G, Fernie A, Brutnell T P, Li P H. Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing[J]. Journal of Integrative Plant Biology, 2018, 60(8):670-690.doi: 10.1111/jipb.12656.
|
[29] |
Studer A J, Gandin A, Kolbe A R, Wang L, Cousins A B, Brutnell T P. A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize[J]. Plant Physiology, 2014, 165(2):608-617.doi: 10.1104/pp.114.237602.
pmid: 24706552
|
[30] |
Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, Łukasik I, Goltsev V, Ladle R J, Dᶏbrowski P, Ahmad P. The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants[M]. Amsteradam:Elsevier, Emerging Technologies and Management of Crop Stress Tolerance, 2014, 2:347-384.doi: 10.1016/B978-0-12-800875-1.00015-6.
|