[1] |
|
|
Research Group of the Research Group of the Agricultural Trade Promotion Center of the Ministry of Agriculture, Ni H X, Xu H Y, Yu K Y. Challenges and policy choice of China's corn industry[J]. Issues in Agricultural Economy, 2014, 35(1):30-37.
|
[2] |
我国玉米饲料与深加工需求情况分析[J]. 农业工程技术(农产品加工业), 2011(9):30-32,38.
|
|
Analysis of corn feed and deep processing demand in China[J]. Agriculture Engineering Technology (Agricultural Product Processing Industry), 2011(9):30-32,38.
|
[3] |
|
|
Gong Q F, Zheng X F, Fu H J. Development and application of CRISPR gene editing technology[J]. Chinese Journal of Biochemistry and Molecular Biology, 2023, 39(3):332-340.
|
[4] |
殷文晶, 陈振概, 黄佳慧, 叶涵斐, 芦涛, 路梅, 饶玉春. 基于CRISPR-Cas9基因编辑技术在作物中的应用[J]. 生物工程学报, 2023, 39(2):399-424.doi: 10.13345/j.cjb.220664.
|
|
Yin W J, Chen Z G, Huang J H, Ye H F, Lu T, Lu M, Rao Y C. Application of CRISPR-Cas9 gene editing technology in crop breeding[J]. Chinese Journal of Biotechnology, 2023, 39(2):399-424.
|
[5] |
Gupta D, Bhattacharjee O, Mandal D, Sen M K, Dey D, Dasgupta A, Kazi T A, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D, Ravichandiran V, Roy S, Ghosh D. CRISPR-Cas9 system:a new-fangled dawn in gene editing[J]. Life Sciences, 2019, 232:116636.doi: 10.1016/j.lfs.2019.116636.
|
[6] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433.doi: 10.1128/jb.169.12.5429-5433.1987.
pmid: 3316184
|
[7] |
韩政宏, 段宇轩, 徐善斌, 王敬国, 刘化龙, 杨洛淼, 贾琰, 辛威, 郑洪亮, 邹德堂. 利用CRISPR/Cas9技术敲除GS3和GS9基因改良水稻粒型性状[J]. 华北农学报, 2022, 37(2):9-17.doi: 10.7668/hbnxb.20192762.
|
|
Han Z H, Duan Y X, Xu S B, Wang J G, Liu H L, Yang L M, Jia Y, Xin W, Zheng H L, Zou D T. Improvement of grain shape in rice by knocking GS3 and GS9 via CRISPR/Cas9 system[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2):9-17.
|
[8] |
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.doi: 10.1126/science.1138140.
pmid: 17379808
|
[9] |
Brouns S J J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J H, Snijders A P L, Dickman M J, Makarova K S, Koonin E V, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891):960-964.doi: 10.1126/science.1159689.
pmid: 18703739
|
[10] |
Garneau J E, Dupuis M È, Villion M, Romero D A, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán A H, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320):67-71.doi: 10.1038/nature09523.
|
[11] |
Deveau H, Barrangou R, Garneau J E, Labonté J, Fremaux C, Boyaval P, Romero D A, Horvath P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. Journal of Bacteriology, 2008, 190(4):1390-1400.doi: 10.1128/JB.01412-07.
|
[12] |
Mojica F J M, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3):733-740.doi: 10.1099/mic.0.023960-0.
pmid: 19246744
|
[13] |
|
|
Dong L, Yang X X, Tong G X, Yan T, Sun Z P, Xu H, Liu T Q, Kuang Y Y. CRISPR/Cas9 gene editing:principle,development and application[J]. Chinese Journal of Fisheries, 2022, 35(3):108-119.
|
[14] |
Hua K, Tao X P, Han P J, Wang R, Zhu J K. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences[J]. Molecular Plant, 2019, 12(7):1003-1014.doi: 10.1016/j.molp.2019.03.009.
pmid: 30928636
|
[15] |
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y Q, Fine E J, Wu X B, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9):827-832.doi: 10.1038/nbt.2647.
pmid: 23873081
|
[16] |
Amrani N, Gao X D, Liu P P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki K E, Wu T, Donohoue P D, Settle A H, Lied A M, McGovern K, Fuller C K, Cameron P, Fazzio T G, Zhu L J, Wolfe S A, Sontheimer E J. NmeCas9 is an intrinsically high-fidelity genome-editing platform[J]. Genome Biology, 2018, 19(1):214.doi: 10.1186/s13059-018-1591-1.
pmid: 30518407
|
[17] |
Xu K, Ren C H, Liu Z T, Zhang T, Zhang T T, Li D, Wang L, Yan Q, Guo L J, Shen J C, Zhang Z Y. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus[J]. Cellular and Molecular Life Sciences, 2015, 72(2):383-399.doi: 10.1007/s00018-014-1679-z.
|
[18] |
Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z L, Gonzales A P W, Li Z Y, Peterson R T, Yeh J R J, Aryee M J, Joung J K. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561):481-485.doi: 10.1038/nature14592.
|
[19] |
Wang J, Teng Y X, Zhang R H, Wu Y F, Lou L, Zou Y S, Li M, Xie Z R, Yan Y J. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor[J]. Nature Communications, 2021, 12(1):6916.doi: 10.1038/s41467-021-27290-9.
pmid: 34824292
|
[20] |
Niu Q F, Wu S Q, Li Y S, Yang X X, Liu P, Xu Y P, Lang Z B. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid[J]. Journal of Integrative Plant Biology, 2020, 62(4):398-402.doi: 10.1111/jipb.12886.
|
[21] |
Nishimasu H, Shi X, Ishiguro S, Gao L Y, Hirano S, Okazaki S, Noda T, Abudayyeh O O, Gootenberg J S, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262.doi: 10.1126/science.aas9129.
pmid: 30166441
|
[22] |
Endo M, Mikami M, Endo A, Kaya H, Itoh T, Nishimasu H, Nureki O, Toki S. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM[J]. Nature Plants, 2019, 5(1):14-17.doi: 10.1038/s41477-018-0321-8.
pmid: 30531939
|
[23] |
Zhang L L, Zhang X, Wang X J, Xu J, Wang M, Li L, Bai G H, Fang H, Hu S T, Li J G, Yan J B, Li J S, Yang X H. SEED CAROTENOID DEFICIENT functions in isoprenoid biosynthesis via the plastid MEP pathway[J]. Plant Physiology, 2019, 179(4):1723-1738.doi: 10.1104/pp.18.01148.
pmid: 30718347
|
[24] |
朱航志, 蒋珊, 陈丹, 刘鹏阳, 万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成[J]. 中国生物工程杂志, 2021, 41(4):37-46.doi: 10.13523/j.cb.2012054.
|
|
Zhu H Z, Jiang S, Chen D, Liu P Y, Wan X. Improving the biosynthesis of β-carotene in Yarrowia lipolytica by introducing an artificial isopentenol utilization pathway[J]. China Biotechnology, 2021, 41(4):37-46.
|
[25] |
|
|
Wang W. Screening of high efficiency receptor materials for maize (Zea Mays) genetic transformation[D]. Taian: Shandong Agricultural University, 2020.
|
[26] |
Xu R B, Li Y F, Sui Z P, Lan T Y, Song W J, Zhang M, Zhang Y R, Xing J W. A C-terminal encoded peptide,ZmCEP1,is essential for kernel development in maize[J]. Journal of Experimental Botany, 2021, 72(15):5390-5406.doi: 10.1093/jxb/erab224.
|
[27] |
Zhang J J, Zhang X F, Chen R R, Yang L, Fan K J, Liu Y, Wang G Y, Ren Z J, Liu Y J. Generation of transgene-free semidwarf maize plants by gene editing of gibberellin-Oxidase20-3 using CRISPR/Cas9[J]. Frontiers in Plant Science, 2020, 11:1048.doi: 10.3389/fpls.2020.01048.
|
[28] |
Ren B, Liu L, Li S F, Kuang Y J, Wang J W, Zhang D W, Zhou X P, Lin H H, Zhou H B. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice[J]. Molecular Plant, 2019, 12(7):1015-1026.doi: 10.1016/j.molp.2019.03.010.
pmid: 30928635
|