[1] |
|
|
Chen Y F. Discussion on high-yield cultivation techniques of maize[J]. World Tropical Agriculture Information, 2021(11):20—21.
|
[2] |
|
|
Wu J Z. Research progress on drought resistance of maize[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2023, 43(6):18—25.
|
[3] |
易双. 玉米紫色酸性磷酸酶基因的鉴定和表达特性分析[D]. 雅安: 四川农业大学, 2014.
|
|
Yi S. Genome-wide identification and expression analysis of purple acid phosphatase in maize[D]. Yaan: Sichuan Agricultural University, 2014.
|
[4] |
Liao H, Wong F L, Phang T H, Cheung M Y, Li W Y F, Shao G H, Yan X L, Lam H M. GmPAP3,a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency[J]. Gene, 2003, 318:103—111.doi: 10.1016/s0378-1119(03)00764-9.
|
[5] |
González-Muñoz E, Avendaño-Vázquez A O, Montes R A C, de Folter S, Andrés-Hernández L, Abreu-Goodger C, Sawers R J H. The maize( Zea mays ssp.mays var.B73)genome encodes 33 members of the purple acid phosphatase family[J]. Frontiers in Plant Science, 2003, 2015, 6:341.doi: 10.3389/fpls.2015.00341.
|
[6] |
Li C C, Gui S H, Yang T, Walk T, Wang X R, Liao H. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J]. Annals of Botany, 2012, 109(1):275—285.doi: 10.1093/aob/mcr246.
pmid: 21948626
|
[7] |
Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to phosphate starvation signalling[J]. Plant Biology, 2011, 13(1):7—15.doi: 10.1111/j.1438-8677.2010.00346.x.
pmid: 21143719
|
[8] |
|
|
Du P X, Liu H, Hu D X, Chen X P, Hong Y B, Li Y G. Genome-wide identification and expression analysis of purple acid phosphatase(PAP)gene family in peanut[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(3):522—531.
|
[9] |
|
|
Liu P D, Huang R, Xu W R, Luo J J, Chen Z J, Liu G D. Research progress of purple acid phosphatase in plants[J]. Chinese Journal of Tropical Crops, 2019, 40(2):410—416.
doi: 10.3969/j.issn.1000-2561.2019.02.028
|
[10] |
|
|
Li C B, Gong S F. Research summarization on acid phosphatase in higher plants[J]. Journal of Xinyang Agricultural College, 2005, 15(3):88—89.
|
[11] |
Kong Y B, Li X H, Wang B, Li W L, Du H, Zhang C Y. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants[J]. Frontiers in Plant Science, 2018, 9:292.doi: 10.3389/fpls.2018.00292.
|
[12] |
|
|
Peng J. Functional analysis of maize pruple acid phosphatase genes ZmPAP13 and ZmPAP7d[D]. Beijing: China Agricultural University, 2017.
|
[13] |
O'Gallagher B, Ghahremani M, Stigter K, Walker E J L, Pyc M, Liu A Y, MacIntosh G C, Mullen R T, Plaxton W C. Arabidopsis PAP17 is a dual-localized purple acid phosphatase up-regulated during phosphate deprivation,senescence,and oxidative stress[J]. Journal of Experimental Botany, 2022, 73(1):382—399.doi: 10.1093/jxb/erab409.
|
[14] |
Li W Y F, Shao G H, Lam H M. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses[J]. The New Phytologist, 2008, 178(1):80—91.doi: 10.1111/j.1469-8137.2007.02356.x.
|
[15] |
del Pozo J C, Allona I, Rubio V, Leyva A, de la Peña A, Aragoncillo C, Paz-Ares J. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. The Plant Journal, 1999, 19(5):579—589.doi: 10.1046/j.1365-313x.1999.00562.x.
|
[16] |
Dionisio G, Madsen C K, Holm P B, Welinder K G, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H. Cloning and characterization of purple acid phosphatase phytases from wheat,barley,maize,and rice[J]. Plant Physiology, 2011, 156(3):1087—1100.doi: 10.1104/pp.110.164756.
|
[17] |
|
|
Wang K X, Guo Z Y, Yin Y H, Chen S Z, Song X Y, Zhao M A. Cloning and expression characteristics of ZmGST gene in maize[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(4):20—27.
|
[18] |
Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, Xia R. TBtools-II:a "one for all,all for one" bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11):1733—1742.doi: 10.1016/j.molp.2023.09.010.
|
[27] |
Zhou Y, Zhao Z H, Zhang H N, Kong Y B. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean[J]. Acta Agronomica Sinica, 2022, 48(3):590—596.
|
[28] |
Xie L L, Shang Q M. Genome-wide analysis of purple acid phosphatase structure and expression in ten vegetable species[J]. BMC Genomics, 2018, 19(1):646.doi: 10.1186/s12864-018-5022-1.
pmid: 30170550
|
[19] |
|
|
Jia Y Y, Sun C T, Yu J L, Liu X L. Research progress on genetic mechanism and molecular breeding of drought tolerance in maize[J]. Horticulture & Seed, 2019, 39(12):37—39.
|
[20] |
|
|
Zhu F, Xu Z Q, Duan Y J, Li Y Y, Song Y H. Transcriptomic analysis of maize silks in response to drought stress[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 37—47.
doi: 10.7668/hbnxb.20194627
|
[21] |
Kaida R M, Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko T S. Activation of beta-glucan synthases by wall-bound purple acid phosphatase in tobacco cells[J]. Plant Physiology, 2009, 150(4):1822—1830.doi: 10.1104/pp.109.139287.
pmid: 19493971
|
[22] |
Hurley B A, Tran H T, Marty N J, Park J, Snedden W A, Mullen R T, Plaxton W C. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation[J]. Plant Physiology, 2010, 153(3):1112—1122.doi: 10.1104/pp.110.153270.
|
[23] |
Sun Q Q, Li J Y, Cheng W Z, Guo H H, Liu X M, Gao H B. AtPAP2,a unique member of the PAP family,functions in the plasma membrane[J]. Genes, 2018, 9(5):257.doi: 10.3390/genes9050257.
|
[24] |
Gowrishankar J. Identification of osmoresponsive genes in Escherichia coli:evidence for participation of potassium and proline transport systems in osmoregulation[J]. Journal of Bacteriology, 1985, 164(1):434—445.doi: 10.1128/jb.164.1.434-445.1985.
pmid: 2995318
|
[25] |
He X, Li L, Xu H, Xi J, Cao X, Xu H, Rong S, Dong Y, Wang C, Chen R, Xu J, Gao X, Xu Z. A rice jacalin-related mannose-binding lectin gene, OsJRL,enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice[J]. Plant Biology, 2017, 19(2):257—267.doi: 10.1111/plb.12514.
pmid: 27718311
|
[26] |
Yang X Y, Zhu K L, Guo X M, Pei Y H, Zhao M A, Song X Y, Li Y B, Liu S T, Li J. Constitutive expression of aldose reductase 1 from Zea mays exacerbates salt and drought sensitivity of transgenic Escherichia coli and Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 156:436—444.doi: 10.1016/j.plaphy.2020.09.029.
|
[27] |
|