[1] |
胡维勤. 食物营养成分速查手册[M]. 哈尔滨: 黑龙江科学技术出版社, 2018.
|
|
Hu W Q. Nutrition facts handbook[M]. Harbin: Heilongjiang Science and Technology Press, 2018.
|
[2] |
|
|
Li G J, Gao M J, Yang Y D, Luo Q Y, Zhu W B. Fluctuation of potato industry and market development situation in 2022[J]. China Vegetables, 2023(5):1-5.
|
[3] |
pmid: 11152757
|
[4] |
|
|
Wang X, Chong K. Current progress on the small GTPase gene superfamily in plants[J]. Chinese Bulletin of Botany, 2005, 22(1):1-10.
|
[5] |
Yang Z, Watson J C. Molecular cloning and characterization of rho,a ras-related small GTP-binding protein from the garden pea[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(18):8732-8736.doi: 10.1073/pnas.90.18.8732.
pmid: 8378356
|
[6] |
Vernoud V, Horton A C, Yang Z B, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis[J]. Plant Physiology, 2003, 131(3):1191-1208.doi: 10.1104/pp.013052.
|
[7] |
Berken A, Wittinghofer A. Structure and function of Rho-type molecular switches in plants[J]. Plant Physiology and Biochemistry, 2008, 46(3):380-393.doi: 10.1016/j.plaphy.2007.12.008.
pmid: 18272378
|
[8] |
Yang S Q, Yan N N, Bouwmeester K, Na R, Zhang Z W, Zhao J. Genome-wide identification of small G protein ROPs and their potential roles in solanaceous family[J]. Gene, 2020, 753:144809.doi: 10.1016/j.gene.2020.144809.
|
[9] |
Cheung M Y, Xue Y, Zhou L, Li M W, Sun S, Lam H M. An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein[J]. The Journal of Biological Chemistry, 2010, 285(48):37359-37369.doi: 10.1074/jbc.M110.172080.
|
[10] |
Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice[J]. Plant Physiology, 2005, 138(4):1903-1913.doi: 10.1104/pp.105.063933.
pmid: 16172097
|
[11] |
Schultheiss H, Dechert C, Kogel K H, Hückelhoven R. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus[J]. The Plant Journal:for Cell and Molecular Biology, 2003, 36(5):589-601.doi: 10.1046/j.1365-313x.2003.01905.x.
|
[12] |
邱爱连, 蔡汉阳, 陈彦生, 刘志钦, 吴明伟, 官德义, 牟少亮, 赖燕, 何水林. 一种辣椒Rop GTPase激活蛋白基因的分离及其特征分析[J]. 农业生物技术学报, 2012, 20(11):1223-1233.
|
|
Qiu A L, Cai H Y, Chen Y S, Liu Z Q, Wu M W, Guan D Y, Mou S L, Lai Y, He S L. Isolation and characterization of a Rop GTPase activating protein gene from pepper(Capsicum annuum L.)[J]. Journal of Agricultural Biotechnology, 2012, 20(11):1223-1233.
|
[13] |
Abbal P, Pradal M, Sauvage F X, Chatelet P, Paillard S, Canaguier A, Adam-Blondon A F, Tesniere C. Molecular characterization and expression analysis of the Rop GTPase family in Vitis vinifera[J]. Journal of Experimental Botany, 2007, 58(10):2641-2652.doi: 10.1093/jxb/erm113.
|
[14] |
pmid: 27218782
|
[15] |
Nielsen E. The small GTPase superfamily in plants:a conserved regulatory module with novel functions[J]. Annual Review of Plant Biology, 2020, 71:247-272.doi: 10.1146/annurev-arplant-112619-025827.
pmid: 32442390
|
[16] |
Agrawal G K, Iwahashi H, Rakwal R. Small GTPase'Rop':molecular switch for plant defense responses[J]. FEBS Letters, 2003, 546(2/3):173-180.doi: 10.1016/s0014-5793(03)00646-x.
|
[17] |
Zheng Z L, Yang Z. The Rop GTPase:an emerging signaling switch in plants[J]. Plant Molecular Biology, 2000, 44(1):1-9.doi: 10.1023/A:1006402628948.
pmid: 11094975
|
[18] |
Bishop A L, Hall A. Rho GTPases and their effector proteins[J]. The Biochemical Journal, 2000, 348(Pt 2):241-255.
|
[19] |
Minamino N, Ueda T. RAB GTPases and their effectors in plant endosomal transport[J]. Current Opinion in Plant Biology, 2019, 52:61-68.doi: 10.1016/j.pbi.2019.07.007.
pmid: 31454706
|
[20] |
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic pathways of hormones in plants[J]. Metabolites, 2023, 13(8):884.doi: 10.3390/metabo13080884.
|
[21] |
Chen D, Ren Y J, Deng Y T, Zhao J. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L.and correlated with ABP1 and PM H +-ATPase activities[J]. Journal of Experimental Botany, 2010, 61(6):1853-1867.doi: 10.1093/jxb/erq056.
pmid: 20348352
|
[22] |
Liu H J, Wang S F, Yu X B, Yu J, He X W, Zhang S L, Shou H X, Wu P. ARL1,a LOB-domain protein required for adventitious root formation in rice[J]. The Plant Journal, 2005, 43(1):47-56.doi: 10.1111/j.1365-313X.2005.02434.x.
|
[23] |
Qi J Y, Wang Y, Yu T, Cunha A, Wu B B, Vernoux T, Meyerowitz E, Jiao Y L. Auxin depletion from leaf primordia contributes to organ patterning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52):18769-18774.doi: 10.1073/pnas.1421878112.
pmid: 25512543
|
[24] |
Yang J C, Zhang J H, Huang Z L, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice[J]. Annals of Botany, 2002, 90(3):369-377.doi: 10.1093/aob/mcf198.
pmid: 12234149
|
[25] |
Han Y Y, Zhang C, Yang H B, Jiao Y L. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18):6840-6845.doi: 10.1073/pnas.1318532111.
|
[26] |
Zou X, Shao J W, Wang Q, Chen P S, Zhu Y C, Yin C X. Supraoptimal cytokinin content inhibits rice seminal root growth by reducing root meristem size and cell length via increased ethylene content[J]. International Journal of Molecular Sciences, 2018, 19(12):4051.doi: 10.3390/ijms19124051.
|
[27] |
Chen B X, Yang H Q. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status[J]. Journal of the Science of Food and Agriculture, 2013, 93(8):1915-1921.doi: 10.1002/jsfa.5990.
pmid: 23258766
|
[28] |
Zhang P, Wang W Q, Zhang G L, Kaminek M, Dobrev P, Xu J, Gruissem W. Senescence-inducible expression of isopentenyl transferase extends leaf life,increases drought stress resistance and alters cytokinin metabolism in cassava[J]. Journal of Integrative Plant Biology, 2010, 52(7):653-669.doi: 10.1111/j.1744-7909.2010.00956.x.
|
[29] |
温福平. 盐胁迫与赤霉素(GA3)处理下水稻幼苗的蛋白质组学分析[D]. 杨凌: 西北农林科技大学, 2009.
|
|
Wen F P. Proteomics analysis of rice seedlings during salt gibberellin (GA3)treatment[D]. Yangling: Northwest A&F University, 2009.
|
[30] |
|
|
Wang Z Q, Cai J, Han G L, Liu Y. Effects of plant growth regulators on germination of black wheat seeds under salt-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3):358-363.
|
[31] |
Zhang A Y, Jiang M Y, Zhang J H, Tan M P, Hu X L. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants[J]. Plant Physiology, 2006, 141(2):475-487.doi: 10.1104/pp.105.075416.
pmid: 16531486
|
[32] |
Zhang Y Y, Zhu H Y, Zhang Q, Li M Y, Yan M, Wang R, Wang L L, Welti R, Zhang W H, Wang X M. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. The Plant Cell, 2009, 21(8):2357-2377.doi: 10.1105/tpc.108.062992.
|
[33] |
Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27):10013-10018.doi: 10.1073/pnas.1321568111.
pmid: 24951508
|
[34] |
Mao Y B, Liu Y Q, Chen D Y, Chen F Y, Fang X, Hong G J, Wang L J, Wang J W, Chen X Y. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature Communications, 2017, 8:13925.doi: 10.1038/ncomms13925.
|
[35] |
Cheng H T, Liu H B, Deng Y, Xiao J H, Li X H, Wang S P. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen[J]. Plant Physiology, 2015, 167(3):1087-1099.doi: 10.1104/pp.114.256016.
pmid: 25624395
|
[36] |
Qi T C, Song S S, Ren Q C, Wu D W, Huang H, Chen Y, Fan M, Peng W, Ren C M, Xie D X. The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(5):1795-1814.doi: 10.1105/tpc.111.083261.
|
[37] |
Cheng Y, Zhou Y, Yang Y, Chi Y J, Zhou J, Chen J Y, Wang F, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors[J]. Plant Physiology, 2012, 159(2):810-825.doi: 10.1104/pp.112.196816.
pmid: 22535423
|
[38] |
Ke Y G, Liu H B, Li X H, Xiao J H, Wang S P. Rice Os PAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions[J]. The Plant Journal, 2014, 78(4):619-631.doi: 10.1111/tpj.12500.
|
[39] |
Xu L, Zhao H Y, Ruan W Y, Deng M J, Wang F, Peng J R, Luo J, Chen Z X, Yi K K. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice[J]. The Plant Cell, 2017, 29(3):560-574.doi: 10.1105/tpc.16.00665.
pmid: 28298519
|
[40] |
刘富荣. 抗条锈病的小麦G蛋白基因TaRab7和TaTypA的功能研究[D]. 杨凌: 西北农林科技大学, 2012.
|
|
Liu F R. Study on the function of G protein genes TaRab7 and TaTypA of wheat resistant to stripe embroidery[D]. Yangling: Northwest A&F University, 2012.
|
[41] |
孙广正. 番茄与白粉菌互作中小G蛋白ShROP1与ShROP11和微丝骨架聚合因子ShARPC3与ShARPC5的功能研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
Sun G Z. Functional characterization of small GTPase ShROP1 and ShROP11,microfilament skeleton polymerization factors ShARPC3 and ShARPC5 in the interaction between tomato and Oidium neolycopersici[D]. Yangling: Northwest A&F University, 2019.
|
[42] |
田再民. 马铃薯小G蛋白基因StRab5b的克隆及其调控晚疫病抗性的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
|
|
Tian Z M. Cloning and functional analysis of small G protein gene StRab5b regulating potato resistance against late blight[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[43] |
杨叔青. 茄科植物小G蛋白ROPs在抗疫霉菌过程中的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
|
|
Yang S Q. The function analyses of Solanaceous small G proteins ROPs in Solanaceous to Phytophthora pathogens[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[44] |
黄亚成. 橡胶树Rop小G蛋白基因家族的克隆与表达分析[D]. 海口: 海南大学, 2013.
|
|
Huang Y C. Cloning and expression analysis of rubber tree Rop small G protein gene family[D]. Haikou: Hainan University, 2013.
|
[45] |
|
|
Li Y Y, Jiao Z. Effects of exogenous methyl jasmonate on the tolerance of wheat seedlings to low temperature[J]. Biotechnology Bulletin, 2018, 34(3):87-92.
|
[46] |
|
|
Liu J. Relationship between wheat powdery mildew resistance induced by methyl jasmonate and expression of nine disease-resistance related genes[D]. Zhengzhou: Henan Agricultural University, 2011.
|
[47] |
|
|
Su Y F, Zheng Q X, Ma X, Li J Q, Wu B D, Hu L S, Fan R. Physiological and biochemical changes of pepper during blast resistance induced by jasmonic acid and salicylic acid[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8):1630-1636.
|
[48] |
|
|
Yang S, Zhang J T, Tang J M, Li Z X. Induction of auxin 2,4-D on resistance of kiwifruit to Botrytis cinerea[J]. Non-wood Forest Research, 2022, 40(3):228-235.
|
[49] |
Su Y X, Wang G L, Huang Z Y, Hu L L, Fu T, Wang X Y. Silencing GhIAA43,a member of cotton AUX/IAA genes,enhances wilt resistance via activation of salicylic acid-mediated defenses[J]. Plant Science, 2022, 314:111126.doi: 10.1016/j.plantsci.2021.111126.
|