[1] |
Assaha D V M, Ueda A, Saneoka H, Al-Yahyai R, Yaish M W. The role of Na + and K + transporters in salt stress adaptation in glycophytes[J]. Frontiers in Physiology, 2017, 8:509.doi: 10.3389/fphys.2017.00509.
|
[2] |
Alqahtani M, Lightfoot D J, Lemtiri-Chlieh F, Bukhari E, Pardo J M, Julkowska M M, Tester M. The role of PQL genes in response to salinity tolerance in Arabidopsis and barley[J]. Plant Direct, 2021, 5(2):e00301.doi: 10.1002/pld3.301.
|
[3] |
Le Gall H, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress[J]. Plants, 2015, 4(1):112-166.doi: 10.3390/plants4010112.
|
[4] |
Cosgrove D J. Plant expansins:diversity and interactions with plant cell walls[J]. Current Opinion in Plant Biology, 2015, 25:162-172.doi: 10.1016/j.pbi.2015.05.014.
pmid: 26057089
|
[5] |
Ilias I A, Airianah O B, Baharum S N, Goh H H. Transcriptomic data of Arabidopsis thaliana hypocotyl upon suppression of expansin genes[J]. Genomics Data, 2017, 12:132-133.doi: 10.1016/j.gdata.2017.05.002.
|
[6] |
Liu Y P, Zhang L, Hao W F, Zhang L, Liu Y, Chen L Q. Expression of two α-type expansins from Ammopiptanthus nanus in Arabidopsis thaliana enhance tolerance to cold and drought stresses[J]. International Journal of Molecular Sciences, 2019, 20(21):5255.doi: 10.3390/ijms20215255.
|
[7] |
pmid: 16356276
|
[8] |
Kende H, Bradford K, Brummell D, Cho H T, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek L. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Molecular Biology, 2004, 55(3):311-314.doi: 10.1007/s11103-004-0158-6.
pmid: 15604683
|
[9] |
McQueen-Mason S, Durachko D M, Cosgrove D J. Two endogenous proteins that induce cell wall extension in plants[J]. The Plant Cell, 1992, 4(11):1425-1433.doi: 10.1105/tpc.4.11.1425.
|
[10] |
Sampedro J, Carey R E, Cosgrove D J. Genome histories clarify evolution of the expansin superfamily:new insights from the poplar genome and pine ESTs[J]. Journal of Plant Research, 2006, 119(1):11-21.doi: 10.1007/s10265-005-0253-z.
pmid: 16411016
|
[11] |
Zhang S Z, Xu R R, Gao Z, Chen C T, Jiang Z S, Shu H R. A genome-wide analysis of the expansin genes in Malus domestica[J]. Molecular Genetics and Genomics, 2014, 289(2):225-236.doi: 10.1007/s00438-013-0796-y.
|
[12] |
Zhu Y, Wu N N, Song W L, Yin G J, Qin Y J, Yan Y M, Hu Y K. Soybean ( Glycine max) expansin gene superfamily origins:segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biology, 2014, 14:93.doi: 10.1186/1471-2229-14-93.
pmid: 24720629
|
[13] |
Liu X P, Dong S Y, Miao H, Bo K L, Li C X, Yang Y Y, Gu X F, Zhang S P. Genome-wide analysis of expansins and their role in fruit spine development in cucumber ( Cucumis sativus L.)[J]. Horticultural Plant Journal, 2022, 8(6):757-768.doi: 10.1016/j.hpj.2021.11.004.
|
[14] |
Li F, Xing S C, Guo Q F, Zhao M R, Zhang J, Gao Q, Wang G P, Wang W. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco[J]. Journal of Plant Physiology, 2011, 168(9):960-966.doi: 10.1016/j.jplph.2010.11.023.
|
[15] |
Han Y Y, Chen Y H, Yin S H, Zhang M, Wang W. Over-expression of TaEXPB23,a wheat expansin gene,improves oxidative stress tolerance in transgenic tobacco plants[J]. Journal of Plant Physiology, 2015, 173:62-71.doi: 10.1016/j.jplph.2014.09.007.
|
[16] |
Marowa P, Ding A M, Xu Z C, Kong Y Z. Overexpression of NtEXPA11 modulates plant growth and development and enhances stress tolerance in tobacco[J]. Plant Physiology and Biochemistry, 2020, 151:477-485.doi: 10.1016/j.plaphy.2020.03.033.
pmid: 32299052
|
[17] |
Geilfus C M, Ober D, Eichacker L A, M hling K H, Zörb C. Down-regulation of ZmEXPB6 ( Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z.mays L.[J]. The Journal of Biological Chemistry, 2015, 290(18):11235-11245.doi: 10.1074/jbc.M114.619718.
|
[18] |
Li H, Yan S H, Zhao L, Tan J J, Zhang Q, Gao F, Wang P, Hou H L, Li L J. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling[J]. BMC Plant Biology, 2014, 14:105.doi: 10.1186/1471-2229-14-105.
pmid: 24758373
|
[19] |
Jadamba C, Kang K, Paek N C, Lee S I, Yoo S C. Overexpression of rice Expansin7(Osexpa7) confers enhanced tolerance to salt stress in rice[J]. International Journal of Molecular Sciences, 2020, 21(2):454.doi: 10.3390/ijms21020454.
|
[20] |
|
|
Chen L F, Meng Y, Chen C H, Li X Y, Wang K F, Dong R. A review of Aquilegia L.[J]. Northern Horticulture, 2019(20):125-130.
|
[21] |
中国科学院植物研究所. 中国高等植物科属检索表[M]. 北京: 科学出版社, 1979:168-173.
|
|
Institute of Chinese Academy of Sciences. Chinese higher plant Families and Genera[M]. Beijing: Science Press, 1979: 168-173.
|
[22] |
|
|
Luo M R, Zhang J. Floral morphogenesis in Semiaquilegia(Ranunculaceae) with scanning electron microscopy[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(11):1874-1880.
|
[23] |
Whittall J B, Hodges S A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers[J]. Nature, 2007, 447(7145):706-709.doi: 10.1038/nature05857.
|
[24] |
|
|
Yang L Y, Gao Y, Zhu M X, Deng Y, Wang C Y. Identification and expression analysis of NRT2 gene family in quinoa[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(S1):8-18.
|
[25] |
潘根, 陶杰, 聂荣, 周兵, 黄思齐, 陈安国, 李建军, 唐慧娟, 李德芳, 赵立宁. 大麻CBDAS基因家族成员的全基因组鉴定及表达分析[J]. 华北农学报, 2021, 36(S1):1-7.doi: 10.7668/hbnxb.20192457.
|
|
Pan G, Tao J, Nie R, Zhou B, Huang S Q, Chen A G, Li J J, Tang H J, Li D F, Zhao L N. Genome-wide identification and expression analysis of members of cannabis CBDAS gene family[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):1-7.
|
[26] |
Kramer E M, Hodges S A. Aquilegia as a model system for the evolution and ecology of petals[J]. Philosophical Transactions of the Royal Society of LondonSeries B, Biological Sciences, 2010, 365(1539):477-490.doi: 10.1098/rstb.2009.0230.
|
[27] |
Filiault D L, Ballerini E S, Mandáková T, et al. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history[J]. eLife, 2018, 7:e36426.doi: 10.7554/eLife.36426.
|
[28] |
Liu Y, Liu W W, Li L, Francis F, Wang X F. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to Rice stripe virus infection[J]. Journal of Integrative Agriculture, 2023, 22(6):1750-1762.doi: 10.1016/j.jia.2022.10.010.
|
[29] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
|
[30] |
Sharma B, Kramer E. Sub-and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia(Columbine, Ranunculaceae)[J]. The New Phytologist, 2013, 197(3):949-957.doi: 10.1111/nph.12078.
|
[31] |
|
|
Xiao J L, Qin M, Ling G Z, Li X F. Advances in studies on the resistance of plant cell walls to harmful metals and salt[J]. Guangdong Agricultural Sciences, 2020, 47(9):73-80.
|
[32] |
Jin Z W, Chandrasekaran U, Liu A Z. Genome-wide analysis of the Dof transcription factors in castor bean ( Ricinus communis L.)[J]. Genes & Genomics, 2014, 36(4):527-537.doi: 10.1007/s13258-014-0189-6.
|
[33] |
Qiu Y L, Li L B, Wang B, Xue J Y, Hendry T A, Li R Q, Brown J W, Liu Y, Hudson G T, Chen Z D. Angiosperm phylogeny inferred from sequences of four mitochondrial genes[J]. Journal of Systematics and Evolution, 2010, 48(6):391-425.doi: 10.1111/j.1759-6831.2010.00097.x.
|
[34] |
|
|
Wang G P, Liu T K, Xu X F, Li Z B, Gao Z Y, Hou X L. Identification of LEA family and expression analysis of some members under low-temperature stress in Chinese cabbage[J]. Acta Horticulturae Sinica, 2022, 49(2):304-318.
doi: 10.16420/j.issn.0513-353x.2021-0044
|
[35] |
Wang L, Wang Z, Xu Y Y, Joo S H, Kim S K, Xue Z, Xu Z H, Wang Z Y, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice[J]. The Plant Journal, 2009, 57(3):498-510.doi: 10.1111/j.1365-313X.2008.03707.x.
pmid: 18980660
|
[36] |
|
|
Wang Y B, Zhang Y W, Liu W, Li W, Wang C J, Dai H Y, Xu R, Zhang L F. Screening of soybean expansins genes response to salt stress and cloning and expression analysis of GmEXPA17a[J]. Shandong Agricultural Sciences, 2022, 54(11):11-18.
|
[37] |
Abuqamar S, Ajeb S, Sham A, Enan M R, Iratni R. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2013, 14(8):813-827.doi: 10.1111/mpp.12049.
pmid: 23782466
|
[38] |
Zhang B Y, Chang L, Sun W N, Ullah A, Yang X Y. Overexpression of an expansin-like gene, GhEXLB2 enhanced drought tolerance in cotton[J]. Plant Physiology and Biochemistry, 2021, 162:468-475.doi: 10.1016/j.plaphy.2021.03.018.
|
[39] |
Ashwin Narayan J, Chakravarthi M, Nerkar G, et al. Overexpression of expansin EaEXPA1,a cell wall loosening protein enhances drought tolerance in sugarcane[J]. Industrial Crops and Products, 2021, 159:113035.doi: 10.1016/j.indcrop.2020.113035.
|
[40] |
Lü P T, Kang M, Jiang X Q, Dai F W, Gao J P, Zhang C Q. RhEXPA4,a rose expansin gene,modulates leaf growth and confers drought and salt tolerance to Arabidopsis[J]. Planta, 2013, 237(6):1547-1559.doi: 10.1007/s00425-013-1867-3.
|
[41] |
Kwon Y R, Lee H J, Kim K H, Hong S W, Lee S J, Lee H. Ectopic expression of Expansin3 or Expansinβ1 causes enhanced hormone and salt stress sensitivity in Arabidopsis[J]. Biotechnology letters, 2008, 30(7):1281-1288.doi: 10.1007/s10529-008-9678-5.
pmid: 18317696
|