[1] |
Wang Y L, Wu F J, Bai J J, He Y K. BrpSPL9( Brassica rapa ssp. pekinensis SPL9)controls the earliness of heading time in Chinese cabbage[J]. Plant Biotechnology Journal, 2014, 12(3):312-321.doi: 10.1111/pbi.12138.
|
[2] |
Wang T Y, Liu S J, Tian S N, Ma T Y, Wang W. Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage[J]. Scientific Reports, 2022, 12(1):11098.doi: 10.1038/s41598-022-15451-9.
|
[3] |
Yue L X, Sun R F, Li G L, Cheng F, Gao L M, Wang Q H, Zhang S F, Zhang H, Zhang S J, Li F. Genetic dissection of heterotic loci associated with plant weight by Graded pool-seq in heading Chinese cabbage( Brassica rapa)[J]. Planta, 2022, 255(6):126.doi: 10.1007/s00425-022-03880-9.
|
[4] |
Wang Y D, Huang X, Huang X M, Su W, Hao Y W, Liu H C, Chen R Y, Song S W. BcSOC1 promotes bolting and stem elongation in flowering Chinese cabbage[J]. International Journal of Molecular Sciences, 2022, 23(7):3459.doi: 10.3390/ijms23073459.
|
[5] |
Kou E F, Huang X M, Zhu Y N, Su W, Liu H C, Sun G W, Chen R Y, Hao Y W, Song S W. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage[J]. Scientific Reports, 2021, 11(1):3976.doi: 10.1038/s41598-021-83519-z.
pmid: 33597591
|
[6] |
Wang X W, Wang H Z, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics, 2011, 43(10):1035-1039.doi: 10.1038/ng.919.
|
[7] |
Li Y F, Fan Y, Jiao Y, Wu J, Zhang Z, Yu X L, Ma Y. Transcriptome profiling of yellow leafy head development during the heading stage in Chinese cabbage( Brassica rapa subsp. pekinensis)[J]. Physiologia Plantarum, 2019, 165(4):800-813.doi: 10.1111/ppl.12784.
|
[8] |
Ren W Q, Wu F J, Bai J J, Li X R, Yang X, Xue W X, Liu H, He Y K. BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage( Brassica rapa ssp. pekinensis)[J]. Horticulture Research, 2020,7:1.doi: 10.1038/s41438-019-0222-7.
|
[9] |
Yue X Z, Su T B, Xin X Y, Li P R, Wang W H, Yu Y J, Zhang D S, Zhao X Y, Wang J, Sun L L, Jin G H, Yu S C, Zhang F L. The adaxial/abaxial patterning of auxin and auxin gene in leaf veins functions in leafy head formation of Chinese cabbage[J]. Frontiers in Plant Science, 2022,13:918112.doi: 10.3389/fpls.2022.918112.
|
[10] |
Gu A X, Meng C, Chen Y Q, Wei L, Dong H, Lu Y, Wang Y H, Chen X P, Zhao J J, Shen S X. Coupling seq-BSA and RNA-seq analyses reveal the molecular pathway and genes associated with heading type in Chinese cabbage[J]. Frontiers in Genetics, 2017,8:176.doi: 10.3389/fgene.2017.00176.
|
[11] |
Li J R, Zhang X M, Lu Y, Feng D X, Gu A X, Wang S, Wu F, Su X J, Chen X P, Li X, Liu M Y, Fan S X, Feng D L, Luo S X, Xuan S X, Wang Y H, Shen S X, Zhao J J. Characterization of non-heading mutation in heading Chinese cabbage( Brassica rapa L.ssp. pekinensis)[J]. Frontiers in Plant Science, 2019,10:112.doi: 10.3389/fpls.2019.00112.
|
[12] |
Yu J, Gao L W, Liu W S, Song L X, Xiao D, Liu T K, Hou X L, Zhang C W. Transcription coactivator ANGUSTIFOLIA3(AN3)regulates leafy head formation in Chinese cabbage[J]. Frontiers in Plant Science, 2019,10:520.doi: 10.3389/fpls.2019.00520.
|
[13] |
Mun J H, Yu H J, Shin J Y, Oh M, Hwang H J, Chung H. Auxin response factor gene family in Brassica rapa:genomic organization,divergence,expression,and evolution[J]. Molecular Genetics and Genomics, 2012, 287(10):765-784.doi: 10.1007/s00438-012-0718-4.
|
[14] |
Meng C, Liu X D, Wu F, Ma L, Wang Y H, Mu J G, Wang M Q. Comparative transcriptome analysis provides insights into molecular pathway and genes associated with head-type formation and phenotypic divergence in Chinese cabbage[J]. Frontiers in Genetics, 2023,14:1190752.doi: 10.3389/fgene.2023.1190752.
|
[15] |
Xue H, Meng J J, Lei P, Cao Y X, An X, Jia M, Li Y, Liu H F, Sheen J, Liu X Y, Yu F. ARF2-PIF5 interaction controls transcriptional reprogramming in the ABS3-mediated plant senescence pathway[J]. The EMBO Journal, 2022, 41(19):e110988.doi: 10.15252/embj.2022110988.
|
[16] |
Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, Sangrador-Vegas A, Yong S Y, Mulder N, Hunter S. Manual GO annotation of predictive protein signatures:the InterPro approach to GO curation[J]. Database, 2012,2012:bar068.doi: 10.1093/database/bar068.
|
[17] |
Souza R, Rouf Mian M A, Vaughn J N, Li Z L. Introgression of a danbaekkong high-protein allele across different genetic backgrounds in soybean[J]. Frontiers in Plant Science, 2023,14:1308731.doi: 10.3389/fpls.2023.1308731.
|
[18] |
Yadav I S, Sharma A, Kaur S, Nahar N, Bhardwaj S C, Sharma T R, Chhuneja P. Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions[J]. Frontiers in Plant Science, 2016, 7:1943.doi: 10.3389/fpls.2016.01943.
|
[19] |
Tang H M, Finn R D, Thomas P D. TreeGrafter:phylogenetic tree-based annotation of proteins with gene Ontology terms and other annotations[J]. Bioinformatics, 2019, 35(3):518-520.doi: 10.1093/bioinformatics/bty625.
|
[20] |
Shi X M, Wu X Y, Qin H Y. A feature extraction method for scRNA-seq processing and its application on COVID-19 data analysis[J]. Journal of Beijing Institute of Technology, 2022, 31(3):285-292.doi: 10.15918/j.jbit1004-0579.2022.052.
|
[21] |
Ferrari I V, Patrizio P. Study of basic local alignment search tool(Blast)and multiple sequence Alignment(Clustal-X)of monoclonal mice/human antibodies[J]. Cold Spring Harbor Laboratory, 2021.doi: 10.1101/2021.07.09.451785.
|
[22] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.doi: 10.1093/molbev/msy096.
|
[23] |
Wang T Y, Wang L, Zhang J H, Dong W H. A simplified universal genomic DNA extraction protocol suitable for PCR[J]. Genetics and Molecular Research, 2011, 10(1):519-525.doi: 10.4238/vol10-1gmr1055.
pmid: 21476197
|
[24] |
Parkin I A P, Koh C, Tang H B, Robinson S J, Kagale S, Clarke W E, Town C D, Nixon J, Krishnakumar V, Bidwell S L, Denoeud F, Belcram H, Links M G, Just J, Clarke C, Bender T, Huebert T, Mason A S, Pires J C, Barker G, Moore J, Walley P G, Manoli S, Batley J, Edwards D, Nelson M N, Wang X Y, Paterson A H, King G, Bancroft I, Chalhoub B, Sharpe A G. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea[J]. Genome Biology, 2014, 15(6):R77.doi: 10.1186/gb-2014-15-6-r77.
|
[25] |
Xie D S, Xu Y C, Wang J P, Liu W R, Zhou Q, Luo S B, Huang W, He X M, Li Q, Peng Q W, Yang X Y, Yuan J Q, Yu J G, Wang X Y, Lucas W J, Huang S W, Jiang B, Zhang Z H. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype[J]. Nature Communications, 2019, 10(1):5158.doi: 10.1038/s41467-019-13185-3.
pmid: 31727887
|
[26] |
Cai X F, Sun X P, Xu C X, Sun H H, Wang X L, Ge C H, Zhang Z H, Wang Q X, Fei Z J, Jiao C, Wang Q H. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits[J]. Nature Communications, 2021, 12(1):7246.doi: 10.1038/s41467-021-27432-z.
pmid: 34903739
|
[27] |
Chai C L, Wang Y Q, Joshi T, Valliyodan B, Prince S, Michel L, Xu D, Nguyen H T. Soybean transcription factor ORFeome associated with drought resistance:a valuable resource to accelerate research on abiotic stress resistance[J]. BMC Genomics, 2015, 16(1):596.doi: 10.1186/s12864-015-1743-6.
|
[28] |
Ren Y, Zhang Z H, Liu J H, Staub J E, Han Y H, Cheng Z C, Li X F, Lu J Y, Miao H, Kang H X, Xie B Y, Gu X F, Wang X W, Du Y C, Jin W W, Huang S W. An integrated genetic and cytogenetic map of the cucumber genome[J]. PLoS One, 2009, 4(6):e5795.doi: 10.1371/journal.pone.0005795.
|
[29] |
Schoch C L, Ciufo S, Domrachev M, Hotton C L, Kannan S, Khovanskaya R, Leipe D, McVeigh R, O'Neill K, Robbertse B, Sharma S, Soussov V, Sullivan J P, Sun L, Turner S, Karsch-Mizrachi I. NCBI Taxonomy:a comprehensive update on curation,resources and tools[J]. Database, 2020,2020:baaa062.doi: 10.1093/database/baaa062.
|
[30] |
Ophir R, Sherman A, Rubinstein M, Eshed R, Sharabi Schwager M, Harel-Beja R, Bar-Ya'akov I, Holland D. Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity[J]. PLoS One, 2014, 9(2):e88998.doi: 10.1371/journal.pone.0088998.
|
[31] |
Ma N, Sun P, Li Z Y, Zhang F J, Wang X F, You C X, Zhang C L, Zhang Z L. Plant disease resistance outputs regulated by AP2/ERF transcription factor family[J]. Stress Biology, 2024, 4(1):2.doi: 10.1007/s44154-023-00140-y.
pmid: 38163824
|
[32] |
Liu H X, Lan Y G, Wang L N, Jiang N Q, Zhang X Y, Wu M, Xiang Y. CiAP2/ERF65 and CiAP2/ERF106,a pair of homologous genes in pecan( Carya illinoensis),regulate plant responses during submergence in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2024,293:154166.doi: 10.1016/j.jplph.2023.154166.
|
[33] |
Zhang X B, Yu F, Lyu X, Chen J Y, Zeng H Y, Xu N M, Wu Y F, Zhu Q K. Transcriptome profiling of Bergenia purpurascens under cold stress[J]. BMC Genomics, 2023, 24(1):754.doi: 10.1186/s12864-023-09850-z.
|
[34] |
Xie Z L, Nolan T M, Jiang H, Yin Y H. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2019,10:228.doi: 10.3389/fpls.2019.00228.
|
[35] |
Ding A M, Xu C T, Xie Q, Zhang M J, Yan N, Dai C B, Lü J, Cui M M, Wang W F, Sun Y H. ERF4 interacts with and antagonizes TCP15 in regulating endoreduplication and cell growth in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022, 64(9):1673-1689.doi: 10.1111/jipb.13323.
|
[36] |
Leivar P, Monte E. PIFs:systems integrators in plant development[J]. The Plant Cell, 2014, 26(1):56-78.doi: 10.1105/tpc.113.120857.
pmid: 24481072
|
[37] |
Cao J, Liu H R, Tan S Y, Li Z H. Transcription factors-regulated leaf senescence:current knowledge,challenges and approaches[J]. International Journal of Molecular Sciences, 2023, 24(11):9245.doi: 10.3390/ijms24119245.
|
[38] |
Bai H, Song Z J, Zhang Y, Li Z Y, Wang Y F, Liu X, Ma J F, Quan J Z, Wu X H, Liu M, Zhou J, Dong Z P, Li D Y. The bHLH transcription factor PPLS1 regulates the color of Pulvinus and leaf sheath in foxtail millet( Setaria italica)[J]. Theoretical and Applied Genetics, 2020, 133(6):1911-1926.doi: 10.1007/s00122-020-03566-4.
|
[39] |
Lu R, Zhang J, Wu Y W, Wang Y, Zhang J, Zheng Y, Li Y, Li X B. bHLH transcription factors LP1 and LP2 regulate longitudinal cell elongation[J]. Plant Physiology, 2021, 187(4):2577-2591.doi: 10.1093/plphys/kiab387.
pmid: 34618066
|
[40] |
齐香玉, 李新茹, 陈双双, 冯景, 陈慧杰, 金玉妍, 苗艳华, 邓衍明. 茉莉花TCP基因家族全基因组鉴定及其表达分析[J]. 华北农学报, 2024, 39(1): 63-71. doi: 10.7668/hbnxb.20194408.
|
|
Qi X Y, Li X R, Chen S S, Feng J, Chen H J, Jin Y Y, Miao Y H, Deng Y M. Genome-wide identification of TCP gene family in Jasminum sambac and expression analysis involved in flower development and pollen-pistil interaction[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 63-71.
|
[41] |
Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis[J]. The Plant Cell, 2012, 24(11):4483-4497.doi: 10.1105/tpc.112.105023.
pmid: 23161888
|
[42] |
Palatnik J F, Allen E, Wu X L, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.doi: 10.1038/nature01958.
|
[43] |
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164,as well as the auxin response,during differentiation of leaves in Arabidopsis[J]. The Plant Cell, 2010, 22(11):3574-3588.doi: 10.1105/tpc.110.075598.
|
[44] |
Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation[J]. The Plant Journal:for Cell and Molecular Biology, 2011, 67(4):595-607.doi: 10.1111/j.1365-313X.2011.04616.x.
|
[45] |
Huang S N, Gao Y, Xue M H, Xu J J, Liao R Q, Shang S Y, Yang X F, Zhao Y H, Li C Y, Liu Z Y, Feng H. BrKAO2 mutations disrupt leafy head formation in Chinese cabbage( Brassica rapa L.ssp. pekinensis)[J]. Theoretical and Applied Genetics, 2022, 135(7):2453-2468.doi: 10.1007/s00122-022-04126-8.
|
[46] |
Gao Y, Qu G Y, Huang S N, Liu Z Y, Fu W, Zhang M D, Feng H. BrCPS1 function in leafy head formation was verified by two allelic mutations in Chinese cabbage( Brassica rapa L.ssp. pekinensis)[J]. Frontiers in Plant Science, 2022,13:889798.doi: 10.3389/fpls.2022.889798.
|
[47] |
|
|
Xu Z Z. Molecular mechanism of PhERF2 mediating jasmonic acid and ethylene regulating petunia resistance to Botrytis cinerea[D]. Yangling: Northwest A&F University, 2022.
|
[48] |
Wang X B, Zeng W F, Ding Y F, Wang Y, Niu L, Yao J L, Pan L, Lu Z H, Cui G C, Li G H, Wang Z Q. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening[J]. Plant Science, 2019, 283:116-126.doi: 10.1016/j.plantsci.2019.02.009.
pmid: 31128681
|