[1] |
Huda K M K, Banu M S A, Tuteja R, Tuteja N. Global calcium transducer P-type Ca 2+-ATPases open new avenues for agriculture by regulating stress signalling[J]. Journal of Experimental Botany, 2013, 64(11):3099-3109.doi: 10.1093/jxb/ert182.
|
[2] |
Bonza M C, De Michelis M I. The plant Ca 2+-ATPase repertoire:biochemical features and physiological functions[J]. Plant Biology, 2011, 13(3):421-430.doi: 10.1111/j.1438-8677.2010.00405.x.
pmid: 21489092
|
[3] |
Hwang I, Sze H, Harper J F. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca 2+ pump(ACA2)located in the endoplasmic reticulum of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11):6224-6229.doi: 10.1073/pnas.97.11.6224.
pmid: 10823962
|
[4] |
Costa A, Luoni L, Marrano C A, Hashimoto K, Köster P, Giacometti S, De Michelis M I, Kudla J, Bonza M C. Ca 2+-dependent phosphoregulation of the plasma membrane Ca 2+-ATPase ACA8 modulates stimulus-induced calcium signatures[J]. Journal of Experimental Botany, 2017, 68(12):3215-3230.doi: 10.1093/jxb/erx162.
pmid: 28531251
|
[5] |
Ghosh S, Bheri M, Bisht D, Pandey G K. Calcium signaling and transport machinery:potential for development of stress tolerance in plants[J]. Current Plant Biology, 2022, 29:100235.doi: 10.1016/j.cpb.2022.100235.
|
[6] |
Spalding E P, Harper J F. The ins and outs of cellular Ca 2+transport[J]. Current Opinion in Plant Biology, 2011, 14(6):715-720.doi: 10.1016/j.pbi.2011.08.001.
pmid: 21865080
|
[7] |
Kamrul Huda K M, Yadav S, Akhter Banu M S, Trivedi D K, Tuteja N. Genome-wide analysis of plant-type Ⅱ Ca 2+ATPases gene family from rice and Arabidopsis:potential role in abiotic stresses[J]. Plant Physiology and Biochemistry, 2013, 65:32-47.doi: 10.1016/j.plaphy.2013.01.002.
pmid: 23416494
|
[8] |
Su T B, Yu S C, Yu R F, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H. Effects of endogenous salicylic acid during calcium deficiency-induced tipburn in Chinese cabbage( Brassica rapa L.ssp. pekinensis)[J]. Plant Molecular Biology Reporter, 2016, 34(3):607-617.doi: 10.1007/s11105-015-0949-8.
|
[9] |
George L, Romanowsky S M, Harper J F, Sharrock R A. The ACA10 Ca 2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis[J]. Plant Physiology, 2008, 146(2):716-728.doi: 10.1104/pp.107.108118.
pmid: 18065565
|
[10] |
Cerana M, Bonza M C, Harris R, Sanders D, De Michelis M I. Abscisic acid stimulates the expression of two isoforms of plasma membrane Ca 2+-ATPase in Arabidopsis thaliana seedlings[J]. Plant Biology, 2006, 8(5):572-578.doi: 10.1055/s-2006-924111.
pmid: 16821193
|
[11] |
Li X Y, Chanroj S, Wu Z Y, Romanowsky S M, Harper J F, Sze H. A distinct endosomal Ca 2+/Mn 2+ pump affects root growth through the secretory process[J]. Plant Physiology, 2008, 147(4):1675-1689.doi: 10.1104/pp.108.119909.
|
[12] |
Corriveau J, Gaudreau L, Caron J, Jenni S, Gosselin A. Testing irrigation,day/night foliar spraying,foliar calcium and growth inhibitor as possible cultural practices to reduce tipburn in lettuce[J]. Canadian Journal of Plant Science, 2012, 92(5):889-899.doi: 10.4141/cjps2011-242.
|
[13] |
魏小春, 原玉香, 李林, 庞文星, 赵艳艳, 董晓冰, 杨双娟, 苏贺楠, 王志勇, 赵佳琦, 牛刘静, 张晓伟. 大白菜抗干烧心病研究进展[J]. 中国瓜菜, 2022, 35(12):1-6.doi: 10.3969/j.issn.1673-2871.2022.12.001.
|
|
Wei X C, Yuan Y X, Li L, Pang W X, Zhao Y Y, Dong X B, Yang S J, Su H N, Wang Z Y, Zhao J Q, Niu L J, Zhang X W. Advances of tipburn resistance in Chinese cabbage[J]. China Cucurbits and Vegetables, 2022, 35(12):1-6.
|
[14] |
Yu H Y, Yan J P, Du X G, Hua J. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses[J]. Journal of Experimental Botany, 2018, 69(10):2693-2703.doi: 10.1093/jxb/ery073.
|
[15] |
Bagur R, Hajnóczky G. Intracellular Ca 2+sensing:its role in calcium homeostasis and signaling[J]. Molecular Cell, 2017, 66(6):780-788.doi: 10.1016/j.molcel.2017.05.028.
|
[16] |
Beacham A M, Wilkins K A, Davies J M, Monaghan J M. Vacuolar Ca 2+/H +exchanger and Ca 2+-ATPase homologues are differentially regulated in tipburn-resistant and susceptible lettuce( Lactuca sativa)cultivars[J]. Plant Physiology and Biochemistry, 2023, 201:107792.doi: 10.1016/j.plaphy.2023.107792.
|
[17] |
Baxter I, Tchieu J, Sussman M R, Boutry M, Palmgren M G, Gribskov M, Harper J F, Axelsen K B. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):618-628.doi: 10.1104/pp.103.021923.
pmid: 12805592
|
[18] |
|
|
Chen T F, Huang M, Liu R, Du H W, Li M F. Bioinformatics analysis of maize ACA gene family[J]. Molecular Plant Breeding, 2023, 21(13):4188-4201.
|
[19] |
|
|
Wang J, Wu X Y, Yang L, Duan Q H, Huang J B. Genome-wide identification and expression analysis of ACA gene family in Brassica rapa[J]. Scientia Agricultura Sinica, 2021, 54(22):4851-4868.
|
[20] |
Birchler J A, Yang H. The multiple fates of gene duplications:deletion,hypofunctionalization,subfunctionalization,neofunctionalization,dosage balance constraints,and neutral variation[J]. The Plant Cell, 2022, 34(7):2466-2474.doi: 10.1093/plcell/koac076.
pmid: 35253876
|
[21] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4:10.doi: 10.1186/1471-2229-4-10.
|
[22] |
Zhang Z, Li J, Zhao X Q, Wang J, Wong G K S, Yu J. KaKs_Calculator:calculating Ka and Ks through model selection and model averaging[J]. Genomics,Proteomics & Bioinformatics, 2006, 4(4):259-263.doi: 10.1016/S1672-0229(07)60007-2.
|
[23] |
李艳肖, 张春兰, 耿柳婷, 陈艳秋, 张丽, 向殿军, 刘鹏. 蓖麻RcACA基因家族鉴定及非生物胁迫下表达模式分析[J]. 生物工程学报, 2023, 39(7):2861-2873.doi: 10.13345/j.cjb.220820.
|
|
Li Y X, Zhang C L, Geng L T, Chen Y Q, Zhang L, Xiang D J, Liu P. Identification and expression pattern analysis of RcACA gene family in castor under abiotic stresses[J]. Chinese Journal of Biotechnology, 2023, 39(7):2861-2873.
|
[24] |
Aslam R, Williams L E, Bhatti M F, Virk N. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress[J]. BMC Plant Biology, 2017, 17(1):174.doi: 10.1186/s12870-017-1112-5.
pmid: 29078753
|
[25] |
|
|
Liu Y X, Shu Y, Zhang N, Chen X L, Wang A X. Identification and analysis of Ca2+-ATPase gene family in Solanaceae[J]. Molecular Plant Breeding, 2021, 19(13):4268-4277.
|
[26] |
Qin S W, Li Z, He L X, Lin W M. Similarity analysis of 3D structures of proteins based tile-CNN[J]. IEEE Access, 2020, 8:44622-44631.doi: 10.1109/access.2020.2977945.
|
[27] |
Jiang Y X, Ding P T. Calcium signaling in plant immunity:a spatiotemporally controlled symphony[J]. Trends in Plant Science, 2023, 28(1):74-89.doi: 10.1016/j.tplants.2022.11.001.
|
[28] |
Tian W, Wang C, Gao Q F, Li L G, Luan S. Calcium spikes,waves and oscillations in plant development and biotic interactions[J]. Nature Plants, 2020, 6(7):750-759.doi: 10.1038/s41477-020-0667-6.
pmid: 32601423
|
[29] |
Ma R H, Tian N, Wang J S, Fan M L, Wang B, Qu P Y, Xu S Y, Xu Y B, Cheng C Z, Lü P T. Genome-wide identification and characterization of banana Ca 2+-ATPase genes and expression analysis under different concentrations of Ca 2+treatments[J]. International Journal of Molecular Sciences, 2022, 23(19):11914.doi: 10.3390/ijms231911914.
|