[1] |
丁贤群, 郭杰, 晋美加措, 韩旭, 薛明. 我国牦牛遗传资源的保护与开发利用情况[J]. 当代畜牧, 2017(15):26-28.
|
|
Ding X Q, Guo J, Jin M, Han X, Xue M.Protection,development and utilization of yak genetic resources in China[J]. Contemporary Animal Husbandry, 2017(15):26-28.
|
[2] |
|
|
Zhou J, Meng X Q, Qin H N, Wan R D, Li L, Zhang Q W, Jing H X, Wei Q. Comparative on skeletal muscle fiber types and MYHC gene expression in yaks at different altitudes[J]. Chinese Journal of Veterinary Science, 2022, 42(6):1263-1269.
|
[3] |
褚敏. 营养胁迫条件下牦牛皮下脂肪和背肌差异microRNAs的筛选与鉴定[D]. 北京: 中国农业科学院, 2015.
|
|
Chu M. Screening and identification of microRNAs differentiated between subcutaneous fat and back muscle of yak under nutritional stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
|
[4] |
|
|
Xie F L. The expression difference of genes related to brown adipose tissue of yak and comparison of fatty acid composition in different seasons[D]. Xining: Qinghai University, 2019.
|
[5] |
王方国, 陈胜利, 颜新敏, 郝华芳, 兰仕梅, 李章程, 马丽娜, 储岳峰, 曹随忠. 青海地区牦牛牛支原体核酸检测分析[J]. 中国兽医学报, 2022, 42(9):1851-1855,1868.doi: 10.16303/j.cnki.1005-4545.2022.09.19.
|
|
Wang F G, Chen S L, Yan X M, Hao H F, Lan S M, Li Z C, Ma L N, Chu Y F, Cao S Z. Nucleic acid detection and analysis of Mycoplasma bovis in yak in Qinghai region[J]. Chinese Journal of Veterinary Science, 2022, 42(9):1851-1855,1868.
|
[6] |
Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction[J]. Science, 1995, 270(5244):2008-2011.doi: 10.1126/science.270.5244.2008.
pmid: 8533096
|
[7] |
Zhang Y C, O'Keefe R J, Jonason J H. BMP-TAK1 (MAP3K7) induces adipocyte differentiation through PPARγ signaling[J]. Journal of Cellular Biochemistry, 2017, 118(1):204-210.doi: 10.1002/jcb.25626.
pmid: 27293199
|
[8] |
Kishimoto K, Matsumoto K, Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop[J]. Journal of Biological Chemistry, 2000, 275(10):7359-7364.doi: 10.1074/jbc.275.10.7359.
pmid: 10702308
|
[9] |
Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB1:an activator of the TAK1 MAPKKK in TGF-β signal transduction[J]. Science, 1996, 272(5265):1179-1182.doi: 10.1126/science.272.5265.1179.
pmid: 8638164
|
[10] |
Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, Weber A, Weiskirchen R, Liedtke C, Gassler N, Müller M, de Vos R, Wolf M J, Boege Y, Seleznik G M, Zeller N, Erny D, Fuchs T, Zoller S, Cairo S, Buendia M A, Prinz M, Akira S, Tacke F, Heikenwalder M, Trautwein C, Luedde T. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer[J]. Cancer Cell, 2010, 17(5):481-496.doi: 10.1016/j.ccr.2010.03.021.
pmid: 20478530
|
[11] |
van Caam A, Madej W, Garcia de Vinuesa A,Goumans M J,Ten Dijke P,Blaney Davidson E,van der Kraan P.TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity[J]. Arthritis Research & Therapy, 2017, 19(1):112.doi: 10.1186/s13075-017-1302-4.
|
[12] |
Rincón M, Davis R J. Regulation of the immune response by stress-activated protein kinases[J]. Immunological Reviews, 2009, 228(1):212-224.doi: 10.1111/j.1600-065X.2008.00744.x.
|
[13] |
|
[14] |
Gingery A, Bradley E W, Pederson L, Ruan M, Horwood N J, Oursler M J. TGF-β coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival[J]. Experimental Cell Research, 2008, 314(15):2725-2738.doi: 10.1016/j.yexcr.2008.06.006.
pmid: 18586026
|
[15] |
Yi W F, Hu M Y, Shi L L, Li T, Bai C Y, Sun F L, Ma H H, Zhao Z L, Yan S Q. Whole genome sequencing identified genomic diversity and candidated genes associated with economic traits in Northeasern Merino in China[J]. Frontiers in Genetics, 2024, 15:1302222.doi: 10.3389/fgene.2024.1302222.
|
[16] |
|
|
Wang S, Shi J H, Wang Z S, Hu R, Wang J M, Xue B, Peng Q H. Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3):755-765.
doi: 10.11843/j.issn.0366-6964.2022.03.009
|
[17] |
Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism,aging,and longevity[J]. Handbook of Experimental Pharmacology, 2011, 206:125-162.doi: 10.1007/978-3-642-21631-2_7.
|
[18] |
Zamani N, Brown C W. Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure[J]. Endocrine Reviews, 2011, 32(3):387-403.doi: 10.1210/er.2010-0018.
pmid: 21173384
|
[19] |
Hata K J, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor γ during bone morphogenetic protein 2-induced adipogenesis[J]. Molecular Biology of the Cell, 2003, 14(2):545-555.doi: 10.1091/mbc.e02-06-0356.
|
[20] |
Brown K, Vial S C M, Dedi N, Long J M, Dunster N J, Cheetham G M T. Structural basis for the interaction of TAK1 kinase with its activating protein TAB1[J]. Journal of Molecular Biology, 2005, 354(5):1013-1020.doi: 10.1016/j.jmb.2005.09.098.
pmid: 16289117
|
[21] |
|
|
Li R, Xu H X, Wu W, Wang S Y, Ren M K, Zhang P P, Xu Y J. Molecular cloning,temporal and spatial expression patterns,and subcellular localization of porcine TAK1 gene[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5):68-75.
|
[22] |
Ikeda J, Ichiki T, Takahara Y, Kojima H, Sankoda C, Kitamoto S, Tokunou T, Sunagawa K. PPARγ agonists attenuate palmitate-induced ER stress through up-regulation of SCD-1 in macrophages[J]. PLoS One, 2015, 10(6):e0128546.doi: 10.1371/journal.pone.0128546.
|
[23] |
Wang S B, Zhou G X, Shu G, Wang L N, Zhu X T, Gao P, Xi Q Y, Zhang Y L, Yuan L, Jiang Q Y. Glucose utilization,lipid metabolism and BMP-Smad signaling pathway of porcine intramuscular preadipocytes compared with subcutaneous preadipocytes[J]. Cellular Physiology and Biochemistry, 2013, 31(6):981-996.doi: 10.1159/000350116.
|
[24] |
|
|
Jin Z L, Guo X R, Zhou X H, Zhou J Y, Ni Y H, Wang B, Pan X Q, Chen R H. Changes of MAPK8 gene expression during mouse 3T3-L1 preadipocyte differentiation[J]. Chinese Journal of Child Health Care, 2004, 12(4):327-329.
|
[25] |
Zhang J, Cao L, Wang X H, Li Q, Zhang M, Cheng C, Yu L W, Xue F, Sui W H, Sun S W, Li N, Bu P L, Liu B Y, Gao F, Zhen J H, Su G H, Zhang C, Gao C J, Zhang M, Zhang Y. The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway[J]. Cell Death and Differentiation, 2022, 29(3):556-567.doi: 10.1038/s41418-021-00874-0.
|
[26] |
Wu Y Z, Zhang Q, Wei X H, Jiang C X, Li X K, Shang H C, Lin S. Multiple anti-inflammatory mechanisms of zedoary turmeric oil injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics[J]. Phytomedicine, 2022, 106:154418.doi: 10.1016/j.phymed.2022.154418.
|
[27] |
Ye J, Yan X, Qin P, Gong X B, Li H L, Liu Y, Yu T, Zhang Y H, Ling Y H, Cao H G, Li Y S, Fang F G. Proteomic analysis of hypothalamus in prepubertal and pubertal female goat[J]. Journal of Proteomics, 2022, 251:104411.doi: 10.1016/j.jprot.2021.104411.
|
[28] |
Xu M X, Ge C X, Zhu L C, Qin Y T, Du C J, Lou D S, Li Q, Hu L F, Sun Y, Dai X L, Xiong M X, Long T T, Zhan J X, Kuang Q, Li H H, Yang Q F, Huang P, Teng X P, Feng J, Wu Y K, Dong W, Wang B C, Tan J. iRhom2 promotes hepatic steatosis by activating MAP3K7-dependent pathway[J]. Hepatology, 2021, 73(4):1346-1364.doi: 10.1002/hep.31436.
|
[29] |
Kim S W, Muise A M, Lyons P J, Ro H S. Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation[J]. Journal of Biological Chemistry, 2001, 276(13):10199-10206.doi: 10.1074/jbc.M010640200.
pmid: 11152475
|