[1] |
Yang X W, Wang X Y, Ji L, Yi Z L, Fu C X, Ran J C, Hu R B, Zhou G K. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis[J]. Plant Cell Reports, 2015, 34(6):943-958.doi: 10.1007/s00299-015-1756-2.
doi: 10.1007/s00299-015-1756-2
URL
|
[2] |
Wang T T, Yu T F, Fu J D, Su H G, Chen J, Zhou Y B, Chen M, Guo J, Ma Y Z, Wei W L, Xu Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance[J]. Frontiers in Plant Science, 2020, 11:604690.doi: 10.3389/fpls.2020.604690.
doi: 10.3389/fpls.2020.604690
URL
|
[3] |
Khan S A, Li M Z, Wang S M, Yin H J. Revisiting the role of plant transcription factors in the battle against abiotic stress[J]. International Journal of Molecular Sciences, 2018, 19(6):1634.doi: 10.3390/ijms19061634.
doi: 10.3390/ijms19061634
URL
|
[4] |
Hoang X L T, Nhi D N H, Thu N B A, Thao N P, Tran L S P. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6):483-497.doi: 10.2174/1389202918666170227150057.
doi: 10.2174/1389202918666170227150057
pmid: 29204078
|
[5] |
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada B H, Shaheen I, Aslam M M. GRAS transcription factors emerging regulator in plants growth,development,and multiple stresses[J]. Molecular Biology Reports, 2022, 49(10):9673-9685.doi: 10.1007/s11033-022-07425-x.
doi: 10.1007/s11033-022-07425-x
|
[6] |
Tian C G, Wan P, Sun S H, Li J Y, Chen M S. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4):519-532.doi: 10.1023/B∶PLAN.0000038256.89809.57.
doi: 10.1023/B∶PLAN.0000038256.89809.57
URL
|
[7] |
Chen Y Q, Tai S S, Wang D W, Ding A M, Sun T T, Wang W F, Sun Y H. Homology-based analysis of the GRAS gene family in tobacco[J]. Genetics and Molecular Research, 2015, 14(4):15188-15200.doi: 10.4238/2015.november.25.7.
doi: 10.4238/2015.November.25.7
pmid: 26634482
|
[8] |
Guo Y Y, Wu H Y, Li X, Li Q, Zhao X Y, Duan X Q, An Y R, L W, An H L. Identification and expression of GRAS family genes in maize( Zea mays L.)[J]. PLoS One, 2017, 12(9):e0185418.doi: 10.1371/journal.pone.0185418.
doi: 10.1371/journal.pone.0185418
|
[9] |
Liu X Y, Widmer A. Genome-wide comparative analysis of the GRAS gene family in populus, Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2014, 32(6):1129-1145.doi: 10.1007/s11105-014-0721-5.
doi: 10.1007/s11105-014-0721-5
URL
|
[10] |
Chen Y, Zhu P P, Wu S Y, Lu Y, Sun J, Cao Q H, Li Z Y, Xu T. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida[J]. BMC Genomics, 2019, 20(1):911.doi: 10.1186/s12864-019-6316-7.
doi: 10.1186/s12864-019-6316-7
pmid: 31783728
|
[11] |
Zhang B, Liu J, Yang Z E, Chen E Y, Zhang C J, Zhang X Y, Li F G. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L.[J]. BMC Genomics, 2018, 19(1):348.doi: 10.1186/s12864-018-4722-x.
doi: 10.1186/s12864-018-4722-x
pmid: 29743013
|
[12] |
doi: 10.3969/j.issn.1000-4440.2021.02.004
|
|
Zhang B, Chen L J, Li Q H, Tang M S. Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2):296-309.
|
[13] |
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth,signal transduction,biotic and abiotic stress resistance and symbiosis formation-a review[J]. Plant Biology, 2022, 24(3):404-416.doi: 10.1111/plb.13364.
doi: 10.1111/plb.13364
URL
|
[14] |
Li W Q, Wu J G, Weng S L, Zhang Y J, Zhang D P, Shi C H. Identification and characterization of dwarf 62,a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice[J]. Planta, 2010, 232(6):1383-1396.doi: 10.1007/s00425-010-1263-1.
doi: 10.1007/s00425-010-1263-1
URL
|
[15] |
Liu Y D, Huang W, Xian Z Q, Hu N, Lin D B, Ren H, Chen J X, Su D D, Li Z G. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling[J]. Frontiers in Plant Science, 2017, 8:1659.doi: 10.3389/fpls.2017.01659.
doi: 10.3389/fpls.2017.01659
URL
|
[16] |
Kim Y J, Yang D H, Park M Y, Sun H J, Song P S, Kang H G, Suh S C, Lee Y E, Lee H Y. Overexpression of Zoysia ZjCIGR1 gene confers cold stress resistance to zoysiagrass[J]. Plant Biotechnology Reports, 2020, 14(1):21-31.doi: 10.1007/s11816-019-00570-z.
doi: 10.1007/s11816-019-00570-z
|
[17] |
Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of VaPAT1,a GRAS transcription factor from Vitis amurensis,confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3):655-666.doi: 10.1007/s00299-015-1910-x.
doi: 10.1007/s00299-015-1910-x
URL
|
[18] |
Yang M G, Yang Q Y, Fu T D, Zhou Y M. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Reports, 2011, 30(3):373-388.doi: 10.1007/s00299-010-0940-7.
doi: 10.1007/s00299-010-0940-7
URL
|
[19] |
Li P, Zhang B, Su T B, Li P R, Xin X Y, Wang W H, Zhao X Y, Yu Y J, Zhang D S, Yu S C, Zhang F L. BrLAS,a GRAS transcription factor from Brassica rapa,is involved in drought stress tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9:1792.doi: 10.3389/fpls.2018.01792.
doi: 10.3389/fpls.2018.01792
URL
|
[20] |
Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14):4011-4019.doi: 10.1093/jxb/erq217.
doi: 10.1093/jxb/erq217
URL
|
[21] |
Jeanmougin F, Thompson J D, Gouy M, Higgins D G, Gibson T J. Multiple sequence alignment with Clustal X[J]. Trends in Biochemical Sciences, 1998, 23(10):403-405.doi: 10.1016/s0968-0004(98)01285-7.
doi: 10.1016/s0968-0004(98)01285-7
pmid: 9810230
|
[22] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096
URL
|
[23] |
Clough S J, Bent A F. Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 1998, 16(6):735-743.doi: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x
URL
|
[24] |
Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor,GbMYB5,is positively involved in plant adaptive response to drought stress[J]. Plant and Cell Physiology, 2015, 56(5):917-929.doi: 10.1093/pcp/pcv019.
doi: 10.1093/pcp/pcv019
URL
|
[25] |
Xu K, Chen S J, Li T F, Ma X S, Liang X H, Ding X F, Liu H Y, Luo L J. OsGRAS23,a rice GRAS transcription factor gene,is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15:141.doi: 10.1186/s12870-015-0532-3.
doi: 10.1186/s12870-015-0532-3
URL
|
[26] |
Zhang H, Liu X Q, Wang X M, Sun M, Song R, Mao P S, Jia S G. Genome-wide identification of GRAS gene family and their responses to abiotic stress in Medicago sativa[J]. International Journal of Molecular Sciences, 2021, 22(14):7729.doi: 10.3390/ijms22147729.
doi: 10.3390/ijms22147729
URL
|
[27] |
doi: 10.13304/j.nykjdb.2019.0718
|
|
Ma P P, Zhao Z Q, Zhu J B, Sun G Q. Physiological and molecular mechanisms of drought and salt tolerance in cotton[J]. Journal of Agricultural Science and Technology, 2021, 23(2):27-36.
|