[1] |
|
|
Huang B. Present situation,challenges and prospects of maize seed industry in China[J]. Seed Science & Technology, 2022, 40(21):133-135.
|
[2] |
中华人民共和国国家统计局. 2022中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
|
|
Statistics Bureau of China People's Republic. China statistical yearbook 2022[M]. Beijing: China Statistics Publishing House, 2022.
|
[3] |
|
|
Zhang X X, Sun Z F, Zheng F X, Liu J, Li C R, Wang Y H. Characteristics of drought distribution for summer maize over whole growth period in Huang-Huai-Hai plain based on crop water deficit index[J]. Chinese Journal of Agrometeorology, 2021, 42(6):495-506.
|
[4] |
|
|
Xue C Y, Zhang H, Liu R H. Drought risk of summer maize in Huanghuaihai area,China[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1521-1529.
|
[5] |
李少昆, 谢瑞芝, 赖军臣, 刘月娥. 玉米抗逆减灾栽培[M]. 北京: 金盾出版社, 2010.
|
|
Li S K, Xie R Z, Lai J C, Liu Y E. Cultivation of maize for stress tolerance and disaster reduction[M]. Beijing: Golden Shield Press, 2010.
|
[6] |
Bolaños J, Edemeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize[J]. Field Crops Research, 1996, 48(1):65-80.doi: 10.1016/0378-4290(96)00036-6.
URL
|
[7] |
|
|
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4):383-391.
|
[8] |
|
|
Yu Z Q, Yu W W, Tan X S, Ye B J, Bi J J. Effects of water stress on dry matter partiton of the summer maize[J]. Acta Agriculturae Boreali-Sinica, 2009, 24:149-154.
|
[9] |
Fuad-Hassan A, Tardieu F, Turc O. Drought-induced changes in anthesis-silking interval are related to silk expansion:a spatio-temporal growth analysis in maize plants subjected to soil water deficit[J]. Plant,Cell & Environment, 2008, 31(9):1349-1360.doi: 10.1111/j.1365-3040.2008.01839.x.
|
[10] |
Cesarino I, Araújo P, Sampaio Mayer J L, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. Expression of SofLAC,a new laccase in sugarcane,restores lignin content but not S:G ratio of Arabidopsis lac17 mutant[J]. Journal of Experimental Botany, 2013, 64(6):1769-1781.doi: 10.1093/jxb/ert045.
pmid: 23418623
|
[11] |
Turc O, Bouteill M, Fuad-Hassan A, Welcker C, Tardieu F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize[J]. The New Phytologist, 2016, 212(2):377-388.doi: 10.1111/nph.14053.
URL
|
[12] |
Stein O, Granot D. An overview of sucrose synthases in plants[J]. Frontiers in Plant Science, 2019, 10:95.doi: 10.3389/fpls.2019.00095.
pmid: 30800137
|
[13] |
Zinselmeier C, Lauer M J, Boyer J S. Reversing drought-induced losses in grain yield:sucrose maintains embryo growth in maize[J]. Crop Science, 1995, 35(5):1390-1400.doi: 10.2135/cropsci1995.0011183X003500050022x.
URL
|
[14] |
AbdElgawad H, Avramova V, Baggerman G, Van Raemdonck G, Valkenborg D, Van Ostade X, Guisez Y, Prinsen E, Asard H, Van den Ende W, Beemster G T S. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize[J]. Plant,Cell & Environment, 2020, 43(9):2254-2271.doi: 10.1111/pce.13813.
|
[15] |
Smith M R, Rao I M, Merchant A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality[J]. Frontiers in Plant Science, 2018, 9:1889.doi: 10.3389/fpls.2018.01889.
pmid: 30619435
|
[16] |
|
|
Jiang F T, Wang S P, Qi J S, Xiong C X. Research progress of transcriptional technology and its advances in plant phylogeny[J]. Modern Salt and Chemical Industry, 2020, 47(4):14-17.
|
[17] |
|
|
Wang J Y, Yu T Y, Zhang C B. Research progress on transcriptomics in maize[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S1):10-15.
|
[18] |
|
|
Wang Y J, Yang J, Liang X L, Abra A, Han D X, Xi H J, Liu J, Li M D. Transcriptome analysis of floral organ differentiation stage of two maize inbred lines under drought stress[J]. Xinjiang Agricultural Sciences, 2020, 57(9):1578-1585.
doi: 10.6048/j.issn.1001-4330.2020.09.002
|
[19] |
|
|
Kan X. Fine-mapping and transcriptome analysis of Leafy gene in maize[D]. Yangzhou: Yangzhou University, 2018.
|
[20] |
|
|
Xu Z L, Han K L, Gu L J, Song N N, Wang J B, Cheng B J, Jiang H Y. Transcriptome analysis of heterosis in maize (Zea mays) hybrid Longping 206[J]. Journal of Agricultural Biotechnology, 2017, 25(5):709-721.
|
[21] |
|
|
Cui R, Wang T Y, Wang C Y, Li J X, Zhang X Y, Liu S X. Effects of drought stress on growth characters and yield of different maize varieties[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):94-100.
doi: 10.7668/hbnxb.20192242
|
[22] |
Krasensky J, Jonak C. Drought,salt,and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012, 63(4):1593-1608.doi: 10.1093/jxb/err460.
pmid: 22291134
|
[23] |
Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1):180-209.doi: 10.1111/jipb.13054.
URL
|
[24] |
Liu W, Jiang Y, Wang C H, Zhao L L, Jin Y Z, Xing Q J, Li M, Lü T H, Qi H Y. Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon ( Cucumis melo L.) seedlings contributes to drought tolerance[J]. Plant Molecular Biology, 2020, 103(6):689-704.doi: 10.1007/s11103-020-01018-7.
|
[25] |
|
|
Zou E Q. Effect of 4CL gene transfection on plant lignin metabolism[D]. Jinan: Shandong Normal University, 2011.
|
[26] |
|
|
Feng C Y. Research progress on 4-coumarate:coenzyme A ligase (4CL) of plants[J]. Xiandai Nongye Keji, 2010(8):39-40.
|
[27] |
Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40:347-369.doi: 10.1146/annurev.pp.40.060189.002023.
URL
|
[28] |
Sun H Y, Guo K, Feng S Q, Zou W H, Li Y, Fan C F, Peng L C. Positive selection drives adaptive diversification of the 4-coumarate:CoA ligase (4CL) gene in angiosperms[J]. Ecology and Evolution, 2015, 5(16):3413-3420.doi: 10.1002/ece3.1613.
URL
|
[29] |
|
|
Fan F F, Li J Q, Zhan Q W, Wang L H, Liu Y L. Research progress of cinnamoyl-CoA reductase (CCR) gene in plants[J]. China Biotechnology, 2015, 35(12):96-102.
|
[30] |
Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4):a severely lignin-deficient mutant of Arabidopsis[J]. The Plant Journal, 2001, 26(2):205-216.doi: 10.1046/j.1365-313x.2001.01021.x.
URL
|
[31] |
|
|
Tao Y Z, Guan Y T. Study of chemical composition of lignin and its application[J]. Journal of Cellulose Science and Technology, 2003, 11(1):42-55.
|
[32] |
Cheng X, Li M L, Li D H, Zhang J Y, Jin Q, Sheng L L, Cai Y P, Lin Y. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear ( Pyrus bretschneideri) fruit[J]. Biology Open, 2017, 6(11):1602-1613.doi: 10.1242/bio.026997.
URL
|
[33] |
|
|
Zhang X, Wang X J, Li S C, Dong T T, Wang Z H. Research progress of lignin biosynthesis and regulation during granulation of citrus[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12):2131-2140.
doi: 10.3969/j.issn.1004-1524.2019.12.22
|
[34] |
|
|
Long G H, Wu P Y, Fu J Z, Lu H L, Zhang R. Research progress on regulation of peroxidase on lignin synthesis[J]. XianDai NongYe KeJi, 2021(23):47-49,54.
|
[35] |
Tu M X, Wang X H, Yin W C, Wang Y, Li Y J, Zhang G F, Li Z, Song J Y, Wang X P. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes[J]. Horticulture Research, 2020, 7:150.doi: 10.1038/s41438-020-00372-3.
|
[36] |
|
|
Zhu Q P, Guo C M, MUBAREKE·Ayoupu, Gong P, Su R Y, Yang B, Liao K. Changes in relative enzyme activities during lignification in the almond endocarp[J]. Journal of Fruit Science, 2018, 35 (9):1079-1086.
|
[37] |
王海帆, 王有国. 干旱与盐胁迫下不同栽培基质碧玉兰POD活性的变化[J]. 亚热带农业研究, 2013, 9(4):235-238.
|
|
Wang H F, Wang Y G. POD activity change in Cymbidium lowianum grown by different substrates under drought and salt stresses[J]. Subtropical Agriculture Research, 2013, 9(4):235-238.
|
[38] |
吴玺, 和秋兰, 王正维, 刘婧, 海梅荣, 张炜. 基于转录组测序对干旱胁迫下马铃薯块茎中淀粉和蔗糖代谢途径相关基因的差异表达分析[J]. 基因组学与应用生物学, 2023, 42(1):44-59.doi: 10.13417/j.gab.042.000044.
|
|
Wu X, He Q L, Wang Z W, Liu J, Hai M R, Zhang W. Differential expression analysis of genes related to starch and sucrose metabolic pathways in potato tubers under drought stress simulated based on transcriptome sequencing[J]. Genomics and Applied Biology, 2023, 42(1):44-59.
|
[39] |
Feng Z L, Zheng F H, Wu S L, Li R, Li Y, Zhong J X, Zhao H B. Functional characterization of a cucumber ( Cucumis sativus L.) vacuolar invertase,CsVI1,involved in hexose accumulation and response to low temperature stress[J]. International Journal of Molecular Sciences, 2021, 22(17):9365.doi: 10.3390/ijms22179365.
URL
|
[40] |
Topcu H, Degirmenci I, Sonmez D A, Paizila A, Karci H, Kafkas S, Kafkas E, Ercisli S, Alatawi A. Sugar,invertase enzyme activities and invertase gene expression in different developmental stages of strawberry fruits[J]. Plants (Basel), 2022, 11(4):509.doi: 10.3390/plants11040509.
URL
|
[41] |
Tao H X, Sun H Q, Wang Y F, Wang X, Guo Y P. Effects of water stress on quality and sugar metabolism in'Gala'apple fruit[J]. Horticultural Plant Journal, 2023, 9(1):60-72.doi: 10.1016/j.hpj.2022.03.008.
URL
|
[42] |
Ruan Y L. Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar:insights from the single-celled cotton fibre[J]. Functional Plant Biology, 2007, 34(1):1-10.doi: 10.1071/fp06234.
URL
|
[43] |
Wei Z G, Qu Z S, Zhang L J, Zhao S J, Bi Z H, Ji X H, Wang X W, Wei H R. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height[J]. PLoS One, 2015, 10(3):e0120669.doi: 10.1371/journal.pone.0120669.
URL
|