[1] |
Lee Y H, Kim S M, Lee S B, Kim S H, Yun B W, Hong J K. Disease resistance-based management of Alternaria black spot in cruciferous crops[J]. Research in Plant Disease, 2023, 29(4):363-376.doi: 10.5423/rpd.2023.29.4.363.
|
[2] |
|
|
Ma J R, Yu Y H, Zhang Y Y, Yan M F. Physiological functions of 3-hydroxyacyl ACP dehydratase FabZ in Xanthomonas campestris pv.campestris[J]. Microbiology China, 2024, 51(2):448-459.
|
[3] |
|
|
Shi Y Y, Liu Y J, Yang J H, Mu K. Induction of loose embryogenic callus in cauliflowe[J]. Tianjin Agricultural Sciences, 2019, 25(5):9-12.
|
[4] |
|
|
Yang Y X, Ge X H, Sun D L, Jin Q D, Lu G Q, Yao X W. Construction of efficient CRISPR/Cas9 genome editing technology system in cauliflower[J]. Tianjin Agricultural Sciences, 2022, 28(4):5-9.
|
[5] |
Raj H, Sharma J N. Efficacy of different plant oils against the pathogens causing stalk rot,Alternaria leaf spot and black rot of cauliflower[J]. International Journal of Farm Sciences, 2022, 12(2):1-7.
|
[6] |
Geat N, Singh D. Efficacy evaluation of abiotic elicitors for the management of black rot disease of cauliflower incited by Xanthomonas campestris pv. campestris[J]. International Journal of Environment and Climate Change, 2022:1023-1030.doi: 10.9734/ijecc/2022/v12i1030894.
|
[7] |
Zhang Z H, Wang K H, Chen C H, Tian S B, Wu J, Li J Y, Kong L J, Yang X F, Zhang C W, Li Y, Zhu H F, Xiao D. Transcriptome sequence analysis of defense response of resistant and susceptible bottle gourd to powdery mildew[J]. Agronomy, 2023, 13(5):1406.doi: 10.3390/agronomy13051406.
|
[8] |
|
|
Yao Y R, Huo J F, Hao Y J, Ben H Y, Wang W L. Differential expression analysis of transcriptome in cauliflower cultivars resistant to and susceptible to black rot at seedling stage[J]. Shandong Agricultural Sciences, 2020, 52(7):1-6.
|
[9] |
Shaw R K, Shen Y S, Wang J S, Sheng X G, Zhao Z Q, Yu H F, Gu H H. Advances in multi-omics approaches for molecular breeding of black rot resistance in Brassica oleracea L.[J]. Frontiers in Plant Science, 2021, 12:742553.doi: 10.3389/fpls.2021.742553.
|
[10] |
Song L X, Tang J, Yan J Y, Zeng A S, Lyu S W, Gao B, Yan Y Y, Shi L C, Hou X L. Transcriptomic analysis of resistant and susceptible cabbage lines reveals differential expressions and candidate genes involved in cabbage early responses to black rot[J]. 3 Biotech, 2020, 10(7):308.doi: 10.1007/s13205-020-02256-8.
pmid: 32582505
|
[11] |
Yang L, Yang L L, Zhao C J, Bai Z T, Xie M L, Liu J, Cui X B, Bouwmeester K, Liu S Y. Unravelling alternative splicing patterns in susceptible and resistant Brassica napus lines in response to Xanthomonas campestris infection[J]. BMC Plant Biology, 2024, 24(1):1027.doi: 10.1186/s12870-024-05728-8.
pmid: 39472805
|
[12] |
Sun Q G, Zhang E H, Liu Y P, Xu Z M, Hui M X, Zhang X X, Cai M J. Transcriptome analysis of two lines of Brassica oleracea in response to early infection with Xanthomonas campestris pv. campestris[J]. Canadian Journal of Plant Pathology, 2021, 43(1):127-139.doi: 10.1080/07060661.2020.1775705.
|
[13] |
Klimecka M, Muszyńska G. Structure and functions of plant calcium-dependent protein kinases[J]. Acta Biochimica Polonica, 2007, 54(2):219-233.doi: 10.18388/abp.2007_3242.
pmid: 17446936
|
[14] |
Li A L, Wang X, Leseberg C H, Jia J Z, Mao L. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat ( Triticum aestivum L.)[J]. Plant Signaling & Behavior, 2008, 3(9):654-656.doi: 10.4161/psb.3.9.5757.
|
[15] |
Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R. Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs)[J]. Molecular Plant-Microbe Interactions, 2007, 20(10):1213-1221.doi: 10.1094/mpmi-20-10-1213.
pmid: 17918623
|
[16] |
Romeis T. Calcium-dependent protein kinases play an essential role in a plant defence response[J]. The EMBO Journal, 2001, 20(20):5556-5567.doi: 10.1093/emboj/20.20.5556.
|
[17] |
Cho K M, Nguyen H T K, Kim S Y, Shin J S, Cho D H, Hong S B, Shin J S, Ok S H. CML10,a variant of calmodulin,modulates ascorbic acid synthesis[J]. New Phytologist, 2016, 209(2):664-678.doi: 10.1111/nph.13612.
|
[18] |
Yang D, Chen T, Wu Y S, Tang H Q, Yu J Y, Dai X Q, Zheng Y X, Wan X R, Yang Y, Tan X D. Genome-wide analysis of the peanut CaM/CML gene family reveals that the AhCML69 gene is associated with resistance to Ralstonia solanacearum[J]. BMC Genomics, 2024, 25(1):200.doi: 10.1186/s12864-024-10108-5.
|
[19] |
Wang L, Tsuda K, Sato M, Cohen J D, Katagiri F, Glazebrook J. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae[J]. PLoS Pathogens, 2009, 5(2):e1000301.doi: 10.1371/journal.ppat.1000301.
|
[20] |
Jiang S F, Zheng W W, Li Z W, Tan J R, Wu M F, Li X Y, Hong S B, Deng J Y, Zhu Z J, Zang Y X. Enhanced resistance to Sclerotinia sclerotiorum in Brassica rapa by activating host immunity through exogenous Verticillium dahliae Aspf2-like protein (vdal) treatment[J]. International Journal of Molecular Sciences, 2022, 23(22):13958.doi: 10.3390/ijms232213958.
|
[21] |
Islam M Z, Ahn S Y, Yun H K. Identification of six transcripts encoding putative receptor-like protein kinase (RLK) and their expression profiles in Vitis flexuosa infected with pathogens[J]. Scientia Horticulturae, 2015, 192:108-116.doi: 10.1016/j.scienta.2015.05.025.
|
[22] |
Goff K E, Ramonell K M. the role and regulation of receptor-like kinases in plant defense[J]. Gene Regulation and Systems Biology, 2007,1:117762500700100015.doi: 10.1177/117762500700100015.
|
[23] |
Peart J R, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice D C, Schauser L, Jaggard D A W, Xiao S Y, Coleman M J, Dow M, Jones J D G, Shirasu K, Baulcombe D C. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16):10865-10869.doi: 10.1073/pnas.152330599.
pmid: 12119413
|
[24] |
Leyser O. Auxin signalling:the beginning,the middle and the end[J]. Current Opinion in Plant Biology, 2001, 4(5):382-386.doi: 10.1016/S1369-5266(00)00189-8.
pmid: 11597494
|
[25] |
Xia W X, Yu H Y, Cao P, Luo J, Wang N. Identification of TIFY family genes and analysis of their expression profiles in response to phytohormone treatments and Melampsora larici-populina infection in poplar[J]. Frontiers in Plant Science, 2017, 8:493.doi: 10.3389/fpls.2017.00493.
|
[26] |
Zhang H F, Liu Z W, Geng R M, Ren M, Cheng L R, Liu D, Jiang C H, Wen L Y, Xiao Z L, Yang A G. Genome-wide identification of the TIFY gene family in tobacco and expression analysis in response to Ralstonia solanacearum infection[J]. Genomics, 2024, 116(3):110823.doi: 10.1016/j.ygeno.2024.110823.
|
[27] |
Wang Q, Huang D, Tu W Y, Ma F W, Liu C H. Overexpression of auxin/indole-3-acetic acid gene MdIAA24 enhances Glomerella leaf spot resistance in apple ( Malus domestica)[J]. Horticultural Plant Journal, 2024, 10(1):15-24.doi: 10.1016/j.hpj.2022.12.011.
|
[28] |
Luo S L, Zhang G B, Zhang Z Y, Wan Z L, Liu Z C, Lyu J, Yu J H. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber ( Cucumis sativus L.)[J]. BMC Plant Biology, 2023, 23(1):214.doi: 10.1186/s12870-023-04216-9.
|
[29] |
Bai X X, Zhan G M, Tian S X, Peng H, Cui X Y, Islam M A, Goher F, Ma Y Z, Kang Z S, Xu Z S, Guo J. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust[J]. Plant Physiology, 2021, 187(4):2749-2762.doi: 10.1093/plphys/kiab383.
pmid: 34618056
|