[1] |
Li C Y. Histogenetic aspects of Deer antler development[J]. Frontiers in Bioscience(Elite Edition), 2013, 5(2):479—489.doi: 10.2741/e629.
|
[2] |
Li C Y, Zhao H P, Liu Z, McMahon C. Deer antler-a novel model for studying organ regeneration in mammals[J]. The International Journal of Biochemistry & Cell Biology, 2014, 56:111—122.doi: 10.1016/j.biocel.2014.07.007.
|
[3] |
Tao D Y, Zhao J X, Deng G Z, Jiao J F. Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red Deer( Cervus elaphus)[J]. Journal of Experimental Zoology Part A, Ecological Genetics and Physiology, 2015, 323(10):696—703.doi: 10.1002/jez.1962.
|
[4] |
Bubenik G A, Schams D, White R J, Rowell J, Blake J, Bartos L. Seasonal levels of reproductive hormones and their relationship to the antler cycle of male and female reindeer( Rangifer tarandus)[J]. Comparative Biochemistry and Physiology Part B,Biochemistry & Molecular Biology, 1997, 116(2):269—277.doi: 10.1016/s0305-0491(97)00183-1.
|
[5] |
Wu H J, Xue Y, Zhang Y, Wang Y X, Hou J M. PTH1-34 promotes osteoblast formation through Beclin1-dependent autophagic activation[J]. Journal of Bone and Mineral Metabolism, 2021, 39(4):572—582.doi: 10.1007/s00774-021-01212-7.
pmid: 33818629
|
[6] |
He Y J, Liang X, Zhang X X, Li S S, Sun Y, Li T F. PTH1-34 inhibited TNF-α expression and antagonized TNF-α-induced MMP13 expression in MIO mice[J]. International Immunopharmacology, 2021, 91:107191.doi: 10.1016/j.intimp.2020.107191.
|
[7] |
Zhang H F, Bei M J, Zheng Z Y, Liu N, Cao X H, Xiao Y P, Lian Q Q, Wang Y D, Hou X L, Tian F M. Parathyroid hormone(1-34)attenuates cartilage degradation and preserves subchondral bone micro-architecture in rats with patella baja-induced-patellofemoral joint osteoarthritis[J]. Calcified Tissue International, 2022, 111(1):87—95.doi: 10.1007/s00223-022-00958-0.
|
[8] |
Casado-Díaz A, Dorado G, Giner M, Montoya M J, Navarro-Valverde C, Díez-Pérez A, Quesada-Gómez J M. Proof of concept on functionality improvement of mesenchymal stem-cells,in postmenopausal osteoporotic women treated with teriparatide(PTH1-34),after suffering atypical fractures[J]. Calcified Tissue International, 2019, 104(6):631—640.doi: 10.1007/s00223-019-00533-0.
pmid: 30725167
|
[9] |
An Y, Zhao J F, Nie F F, Wu Y, Xia Y C, Li D. Parathyroid hormone(PTH)promotes ADSC osteogenesis by regulating SIK2 and Wnt4[J]. Biochemical and Biophysical Research Communications, 2019, 516(2):551—557.doi: 10.1016/j.bbrc.2019.06.084.
|
[10] |
Guo B, Wang S T, Duan C C, Li D D, Tian X C, Wang Q Y, Yue Z P. Effects of PTHrP on chondrocytes of Sika Deer antler[J]. Cell and Tissue Research, 2013, 354(2):451—460.doi: 10.1007/s00441-013-1670-2.
pmid: 23824099
|
[11] |
Barling P M, Liu H, Matich J, Mount J, Ka Wai Lai A, Ma L, Basford Nicholson L F. Expression of PTHrP and the PTH/PTHrP receptor in growing red Deer antler[J]. Cell Biology International, 2004, 28(10):661—673.doi: 10.1016/j.cellbi.2004.05.005.
pmid: 15516324
|
[12] |
Chandra A, Lin T, Tribble M B, Zhu J, Altman A R, Tseng W J, Zhang Y J, Akintoye S O, Cengel K, Liu X S, Qin L. PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival[J]. Bone, 2014, 67:33—40.doi: 10.1016/j.bone.2014.06.030.
pmid: 24998454
|
[13] |
Chao C C, Brown R D, Deftos L J. Seasonal levels of serum parathyroid hormone,calcitonin and alkaline phosphatase in relation to antler cycles in white-tailed Deer[J]. Acta Endocrinologica, 1984, 106(2):234—240.doi: 10.1530/acta.0.1060234.
pmid: 6730858
|
[14] |
Rashid H, Ma C Y, Chen H Y, Wang H B, Hassan M Q, Sinha K, de Crombrugghe B, Javed A. Sp7 and Runx2 molecular complex synergistically regulate expression of target genes[J]. Connective Tissue Research, 2014, 55(S1):83—87.doi: 10.3109/03008207.2014.923872.
|
[15] |
Li C Y, Yang F H, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of Deer antlers[J]. Current Stem Cell Research & Therapy, 2009, 4(3):237—251.doi: 10.2174/157488809789057446.
|
[16] |
Kierdorf U, Stock S R, Gomez S, Antipova O, Kierdorf H. Distribution,structure,and mineralization of calcified cartilage remnants in hard antlers[J]. Bone Reports, 2022, 16:101571.doi: 10.1016/j.bonr.2022.101571.
|
[17] |
Yang H, Mohamed A S S, Zhou S H. Oxidized low density lipoprotein,stem cells,and atherosclerosis[J]. Lipids in Health and Disease, 2012, 11:85.doi: 10.1186/1476-511X-11-85.
pmid: 22747902
|
[18] |
Jiang X, Xu C D, Shi H L, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model[J]. PLoS One, 2019, 14(12):e0226163.doi: 10.1371/journal.pone.0226163.
|
[19] |
Cohn-Schwartz D, Schary Y, Yalon E, Krut Z, Da X Y, Schwarz E M, Gazit D, Pelled G, Gazit Z. PTH-induced bone regeneration and vascular modulation are both dependent on endothelial signaling[J]. Cells, 2022, 11(5):897.doi: 10.3390/cells11050897.
|
[20] |
Maruoka H, Yamamoto T, Zhao S, Hongo H, Abe M, Ishizu H, Yoshino H, Luiz de Freitas P H, Li M Q, Hasegawa T. Histological functions of parathyroid hormone on bone formation and bone blood vessels[J]. Journal of Oral Biosciences, 2022, 64(3):279—286.doi: 10.1016/j.job.2022.08.002.
pmid: 35977651
|
[21] |
pmid: 25065891
|
[22] |
Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, Wagatsuma K, Itoi T, Nakase H. Autophagy and autophagy-related diseases:a review[J]. International Journal of Molecular Sciences, 2020, 21(23):8974.doi: 10.3390/ijms21238974.
|
[23] |
Wan W, Liu W. MTORC1 regulates autophagic membrane growth by targeting WIPI2[J]. Autophagy, 2019, 15(4):742—743.doi: 10.1080/15548627.2019.1569949.
pmid: 30646805
|
[24] |
Obara K, Ohsumi Y. Atg14:a key player in orchestrating autophagy[J]. International Journal of Cell Biology, 2011, 2011(1):713435.doi: 10.1155/2011/713435.
|
[25] |
Denton D, Kumar S. Autophagy-dependent cell death[J]. Cell Death & Differentiation, 2019, 26:605—616.doi: 10.1038/s41418-018-0252-y.
|
[26] |
Komori T. Runx2,an inducer of osteoblast and chondrocyte differentiation[J]. Histochemistry and Cell Biology, 2018, 149(4):313—323.doi: 10.1007/s00418-018-1640-6.
|
[27] |
Komori T. Regulation of proliferation,differentiation and functions of osteoblasts by Runx2[J]. International Journal of Molecular Sciences, 2019, 20(7):1694.doi: 10.3390/ijms20071694.
|
[28] |
Komori T. Molecular mechanism of Runx2-dependent bone development[J]. Molecules and Cells, 2020, 43(2):168—175.doi: 10.14348/molcells.2019.0244.
pmid: 31896233
|
[29] |
Peng Y Y, Shi K K, Wang L T, Lu J L, Li H W, Pan S Y, Ma C Y. Characterization of Osterix protein stability and physiological role in osteoblast differentiation[J]. PLoS One, 2013, 8(2):e56451.doi: 10.1371/journal.pone.0056451.
|
[30] |
Hojo H, Ohba S. Sp7 action in the skeleton:its mode of action,functions,and relevance to skeletal diseases[J]. International Journal of Molecular Sciences, 2022, 23(10):5647.doi: 10.3390/ijms23105647.
|
[31] |
Diegel C R, Hann S, Ayturk U M, Hu J C W, Lim K E, Droscha C J, Madaj Z B, Foxa G E, Izaguirre I, Transgenics Core V V A, Paracha N, Pidhaynyy B, Dowd T L, Robling A G, Warman M L, Williams B O. An osteocalcin-deficient mouse strain without endocrine abnormalities[J]. PLoS Genetics, 2020, 16(5):e1008361.doi: 10.1371/journal.pgen.1008361.
|
[32] |
Vimalraj S. Alkaline phosphatase:structure,expression and its function in bone mineralization[J]. Gene, 2020, 754:144855.doi: 10.1016/j.gene.2020.144855.
|
[33] |
Nizet A, Cavalier E, Stenvinkel P, Haarhaus M, Magnusson P. Bone alkaline phosphatase:an important biomarker in chronic kidney disease-mineral and bone disorder[J]. Clinica Chimica Acta;International Journal of Clinical Chemistry, 2020, 501:198—206.doi: 10.1016/j.cca.2019.11.012.
|
[34] |
Wang Y Q, Gu J, Du A N, Zhang S Q, Deng M Q, Zhao R, Lu Y, Ji Y, Shao Y F, Sun W, Kong X Q. SPARC-related modular calcium binding 1 regulates aortic valve calcification by disrupting BMPR-II/p-p38 signalling[J]. Cardiovascular Research, 2022, 118(3):913—928.doi: 10.1093/cvr/cvab107.
|
[35] |
Kram V, Shainer R, Jani P, Meester J A N, Loeys B, Young M F. Biglycan in the skeleton[J]. The Journal of Histochemistry and Cytochemistry, 2020, 68(11):747—762.doi: 10.1369/0022155420937371.
|
[36] |
Tomsig J L, Sohma H, Creutz C E. Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine[J]. The Biochemical Journal, 2004, 378(Pt 3):1089—1094.doi: 10.1042/BJ20031654.
|
[37] |
Zheng Q W, Zhang Y, Jiang J, Jia J, Fan F F, Gong Y J, Wang Z, Shi Q P, Chen D F, Huo Y. Exome-wide association study reveals several susceptibility genes and pathways associated with acute coronary syndromes in Han Chinese[J]. Frontiers in Genetics, 2020, 11:336.doi: 10.3389/fgene.2020.00336.
pmid: 32328087
|
[38] |
Kanekura K, Nishimoto I, Aiso S, Matsuoka M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B(VAPB/ALS8)[J]. The Journal of Biological Chemistry, 2006, 281(40):30223—30233.doi: 10.1074/jbc.M605049200.
|
[39] |
Hill S M, Wrobel L, Ashkenazi A, Fernandez-Estevez M, Tan K, Bürli R W, Rubinsztein D C. VCP/p97 regulates Beclin-1-dependent autophagy initiation[J]. Nature Chemical Biology, 2021, 17(4):448—455.doi: 10.1038/s41589-020-00726-x.
pmid: 33510452
|
[40] |
Lu G, Yi J, Gubas A, Wang Y T, Wu Y H, Ren Y, Wu M, Shi Y, Ouyang C X, Tan H W S, Wang T R, Wang L M, Yang N D, Deng S, Xia D J, Chen R H, Tooze S A, Shen H M. Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation[J]. Autophagy, 2019, 15(11):1917—1934.doi: 10.1080/15548627.2019.1596484.
pmid: 30898011
|
[41] |
Li D F, Vogel P, Li-Harms X, Wang B, Kundu M. ATG14 and RB 1CC 1 play essential roles in maintaining muscle homeostasis[J]. Autophagy, 2021, 17(9):2576—2585.doi: 10.1080/15548627.2021.1911549.
|
[42] |
Zhang H, Ge S, Ni B Q, He K S, Zhu P C, Wu X H, Shao Y F. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages[J]. Autophagy, 2021, 17(12):4218—4230.doi: 10.1080/15548627.2021.1909833.
pmid: 33849389
|
[43] |
Pradella D, Deflorian G, Pezzotta A, Di Matteo A, Belloni E, Campolungo D, Paradisi A, Bugatti M, Vermi W, Campioni M, Chiapparino A, Scietti L, Forneris F, Giampietro C, Volf N, Rehman M, Zacchigna S, Paronetto M P, Pistocchi A, Eichmann A, Mehlen P, Ghigna C. A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis[J]. Nature Communications, 2021, 12:4872.doi: 10.1038/s41467-021-24998-6.
pmid: 34381052
|
[44] |
Persson E, Souza P P C, Floriano-Marcelino T, Conaway H H, Henning P, Lerner U H. Activation of Shc1 allows oncostatin M to induce RANKL and osteoclast formation more effectively than leukemia inhibitory factor[J]. Frontiers in Immunology, 2019, 10:1164.doi: 10.3389/fimmu.2019.01164.
pmid: 31191537
|
[45] |
Zheng Y, Zhang C J, Croucher D R, Soliman M A, St-Denis N, Pasculescu A, Taylor L, Tate S A, Hardy W R, Colwill K, Dai A Y, Bagshaw R, Dennis J W, Gingras A C, Daly R J, Pawson T. Temporal regulation of EGF signalling networks by the scaffold protein Shc1[J]. Nature, 2013, 499:166—171.doi: 10.1038/nature12308.
|
[46] |
Jurak Begonja A, Hoffmeister K M, Hartwig J H, Falet H. FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly[J]. Blood, 2011, 118(8):2285—2295.doi: 10.1182/blood-2011-04-348482.
pmid: 21652675
|
[47] |
Yang G L, Zhao Z L, Qin T T, Wang D, Chen L J, Xiang R, Xi Z, Jiang R C, Zhang Z S, Zhang J N, Li L Y. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation[J]. FASEB Journal, 2017, 31(5):2001—2012.doi: 10.1096/fj.201600800R.
|