[1] |
|
|
Ren G F, Wu Y P, Li H P. Effects of lodging at different stages on economic characters and yield of rape[J]. Crop Research, 2019, 33(4):271—273.
|
[2] |
Kendall S L, Holmes H, White C A, Clarke S M, Berry P M. Quantifying lodging-induced yield losses in oilseed rape[J]. Field Crops Research, 2017, 211:106—113.doi: 10.1016/j.fcr.2017.06.013.
|
[3] |
|
|
Wang J Q, Hou K S. Novel auxiliary feed device for lodging harvest of corn[J]. Agricultural Machinery Using & Maintenance, 2013(6):47.
|
[4] |
Craessaerts G, de Baerdemaeker J, Missotten B, Saeys W. Fuzzy control of the cleaning process on a combine harvester[J]. Biosystems Engineering, 2010, 106(2):103—111.doi: 10.1016/j.biosystemseng.2009.12.012.
|
[5] |
|
[6] |
|
|
Li H G. Dissection of genetic basis of branch angle and stem lodging traits in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2018.
|
[7] |
Shah A N, Tanveer M, Rehman A U, Ahmad Anjum S, Iqbal J, Ahmad R. Lodging stress in cereal-effects and management:an overview[J]. Environmental Science and Pollution Research International, 2017, 24(6):5222—5237.doi: 10.1007/s11356-016-8237-1.
|
[8] |
Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. Exploring the traits for lodging tolerance in wheat genotypes:a review[J]. Physiology and Molecular Biology of Plants, 2019, 25(3):589—600.doi: 10.1007/s12298-018-0629-x.
pmid: 31168225
|
[9] |
李加纳, 卢坤, 荐红举, 梁颖, 陆军花, 彭柳, 申鸽子, 张烨, 张超, 杨博, 张莉. 油菜收获指数研究进展[J]. 中国油料作物学报, 2018, 40(5):640—648.doi: 10.7505/j.issn.1007-9084.2018.05.005.
|
|
Li J N, Lu K, Jian H J, Liang Y, Lu J H, Peng L, Shen G Z, Zhang Y, Zhang C, Yang B, Zhang L. Research advances on harvest index of Brassica napus L.[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5):640—648.
doi: 10.7505/j.issn.1007-9084.2018.05.005
|
[10] |
Zheng M J, Chen J, Shi Y H, Li Y X, Yin Y P, Yang D Q, Luo Y L, Pang D W, Xu X, Li W Q, Ni J, Wang Y Y, Wang Z L, Li Y. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat[J]. Scientific Reports, 2017,7:41805.doi: 10.1038/srep41805.
|
[11] |
|
|
Ma Q M, Xu Y Y, Zhao M A, Song X Y, Pei Y H. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes[J]. Plant Physiology Journal, 2019, 55(8):1123—1132.
|
[12] |
pmid: 27396119
|
|
Deng Y C, Liu W G, Yuan X Q, Yuan J, Zou J L, Du J B, Yang W Y. Relationship between cellulose synthesis metabolism and lodging resistance in intercropping soybean at seedling stage[J]. Chinese Journal of Applied Ecology, 2016, 27(2):469—476.
pmid: 27396119
|
[13] |
|
|
Zhang M W. Lodging resistance and nitrogen regulation in Yangmai series varieties[D]. Yangzhou: Yangzhou University, 2015.
|
[14] |
师恭曜. 甘蓝型油菜茎秆抗倒伏性构成因素的鉴定与评价[D]. 郑州: 郑州大学, 2010.
|
|
Shi G Y. Characterization and evaluation of stem lodging resistance in rapeseed(Brassica campestris L.)[D]. Zhengzhou: Zhengzhou University, 2010.
|
[15] |
魏丽娟. 甘蓝型油菜茎秆木质素与抗性性状的相关性研究及全基因组关联分析[D]. 重庆: 西南大学, 2016.
|
|
Wei L J. The relationship study and genome-wide association analysis of lignin content,the resistance to Sclerotinia sclerotiorum and lodging in Brassica napus[D]. Chongqing: Southwest University, 2016.
|
[16] |
|
|
Wu L R. Study on the stem biochemical components in rapeseed and their relationship with lodging characters[D]. Wuhan: Huazhong Agricultural University, 2015.
|
[17] |
|
|
Li H G, Zhang L P, Wu X M. Genetics of stem strength in Brassica napus in mixed model of major gene and polygene[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(1):10—17.
|
[18] |
|
|
Li Y, Gu H, Qi C K. QTL mapping for lodging resistance and its related traits by RIL population of Brassica napus L.[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(1):10—17.
|
[19] |
Wei L J, Jian H J, Lu K, Yin N W, Wang J, Duan X J, Li W, Liu L Z, Xu X F, Wang R, Paterson A H, Li J N. Genetic and transcriptomic analyses of lignin-and lodging-related traits in Brassica napus[J]. Theoretical and Applied Genetics, 2017, 130(9):1961—1973.doi: 10.1007/s00122-017-2937-x.
|
[20] |
Li H G, Cheng X, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Li L X, Huang Q, Li Z Y, Yan G X, Wu X M. An integration of genome-wide association study and gene co-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus[J]. Frontiers in Plant Science, 2018, 9:796.doi: 10.3389/fpls.2018.00796.
|
[21] |
Lin N, Wang M, Jiang J Y, Zhou Q Y, Yin J M, Li J N, Lian J P, Xue Y F, Chai Y R. Downregulation of Brassica napus MYB69(BnMYB69)increases biomass growth and disease susceptibility via remodeling phytohormone,chlorophyll,shikimate and lignin levels[J]. Frontiers in Plant Science, 2023, 14:1157836.doi: 10.3389/fpls.2023.1157836.
|
[22] |
Jiang J Y, Liao X L, Jin X Y, Tan L, Lu Q F, Yuan C L, Xue Y F, Yin N W, Lin N, Chai Y R. MYB43 in oilseed rape( Brassica napus)positively regulates vascular lignification,plant morphology and yield potential but negatively affects resistance to Sclerotinia sclerotiorum[J]. Genes, 2020, 11(5):581.doi: 10.3390/genes11050581.
|
[23] |
Li W, Lu J X, Lu K, Yuan J L, Huang J H, Du H, Li J N. Cloning and phylogenetic analysis of Brassica napus L.caffeic acid O-methyltransferase 1 gene family and its expression pattern under drought stress[J]. PLoS One, 2016, 11(11):e0165975.doi: 10.1371/journal.pone.0165975.
|
[24] |
Yin N W, Li B, Liu X, Liang Y, Lian J P, Xue Y F, Qu C M, Lu K, Wei L J, Wang R, Li J N, Chai Y R. Two types of cinnamoyl-CoA reductase function divergently in accumulation of lignins,flavonoids and glucosinolates and enhance lodging resistance in Brassica napus[J]. The Crop Journal, 2022, 10(3):647—660.doi: 10.1016/j.cj.2021.10.002.
|
[25] |
Lo C C, Chain P S G. Rapid evaluation and quality control of next generation sequencing data with FaQCs[J]. BMC Bioinformatics, 2014, 15(1):366.doi: 10.1186/s12859-014-0366-2.
|
[26] |
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC:summarize analysis results for multiple tools and samples in a single report[J]. Bioinformatics, 2016, 32(19):3047—3048.doi: 10.1093/bioinformatics/btw354.
|
[27] |
Pérez-Rubio P, Lottaz C, Engelmann J C. FastqPuri:high-performance preprocessing of RNA-seq data[J]. BMC Bioinformatics, 2019, 20(1):226.doi: 10.1186/s12859-019-2799-0.
pmid: 31053060
|
[28] |
Haas B, Dobin A, Stransky N, Li B, Yang X, Tickle T. STAR-Fusion:fast and accurate fusion transcript detection from RNA-Seq[J]. BioRxiv,2017:120295.
|
[29] |
Li B, Dewey C N. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011,12:323.doi: 10.1186/1471-2105-12-323.
|
[30] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194—1202.doi: 10.1016/j.molp.2020.06.009.
|
[31] |
Raza M A S, Shahid A M, Saleem M F, Khan I H, Iqbal R. Effects and management strategies to mitigate drought stress in oilseed rape( Brassica napus L.):a review[J]. Zemdirbyste-Agriculture, 2017, 104(1):85—94.doi: 10.13080/z-a.2017.104.012.
|
[32] |
Cosgrove D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11):850—861.doi: 10.1038/nrm1746.
pmid: 16261190
|
[33] |
Kong Y Z, O'Neill M, Zhou G K. Plant cell walls:isolation and monosaccharide composition analysis[J]. Methods in Molecular Biology, 2018, 1744:313—319.doi: 10.1007/978-1-4939-7672-0_25.
|
[34] |
|
|
Liu J, He H Q, Niu Y Z, Guo S X. Correlation analyses of stalk strength related traits and agronomy traits in Brassica napus L.[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 149—154.
|
[35] |
|
|
Luo G L, Zhang C, Yang B, Tang R, Zhang Y L, Xiao H G. Selection of germplasm resources and digging for candidate genes of stem lodging resistance in Brassica napus L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(5):761—771.
|
[36] |
Ishii T, Matsunaga T, Iwai H, Satoh S, Taoshita J. Germanium does not substitute for boron in cross-linking of rhamnogalacturonan Ⅱ in pumpkin cell walls[J]. Plant Physiology, 2002, 130(4):1967—1973.doi: 10.1104/pp.009514.
|
[37] |
Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko D M, Cosgrove D J, Kreil D P, Puzio P S, Bohlmann H, Grundler F M W. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana[J]. The Plant Journal, 2006, 48(1):98—112.doi: 10.1111/j.1365-313X.2006.02856.x.
|
[38] |
Wieczorek K, Grundler F M. Expanding nematode-induced syncytia:the role of expansins[J]. Plant Signaling & Behavior, 2006, 1(5):223—224.doi: 10.4161/psb.1.5.3426.
|
[39] |
|
|
Feng L, Zhang H W, Huang R F. Research progress on LRR receptor-like protein kinase in plant[J]. Journal of Agricultural Science and Technology, 2012, 14(6):43—48.
|
[40] |
Sajjad M, Ahmad A, Riaz M W, Hussain Q, Yasir M, Lu M Z. Recent genome resequencing paraded COBRA-Like gene family roles in abiotic stress and wood formation in poplar[J]. Frontiers in Plant Science, 2023, 14:1242836.doi: 10.3389/fpls.2023.1242836.
|
[41] |
周桃. 拟南芥基因COBL7和COBL9参与根毛发育调控机制的初步分析[D]. 武汉: 武汉大学, 2018.
|
|
Zhou T. Study on the roles of COBRA-Like 7 and 9 in regulating root hair development in Arabidopsis[D]. Wuhan: Wuhan University, 2018.
|
[42] |
Yang Q, Wang S, Chen H, You L, Liu F Y, Liu Z S. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed( Brassica napus L.)[J]. PLoS One, 2021, 16(11):e0260268.doi: 10.1371/journal.pone.0260268.
|
[43] |
|
|
Zhang Y. The effect and mechanism of Arabidopsis XTHs and PMEIs in freezing tolerance[D]. Lanzhou: Lanzhou University, 2018.
|
[44] |
|
|
Du L P, Shen X, Chen S L, Hu Z M. Research advances on a key cell wall remodeling enzyme xyloglucan endotransglucosylase/hydrolase(XTH)[J]. Journal of Agricultural Biotechnology, 2010, 18(3):604—609.
|
[45] |
张黎. 水稻木葡聚糖内糖基转移酶/水解酶(XTH)家族部分基因的功能分析[D]. 重庆: 重庆大学, 2012.
|
|
Zhang L. Functional analysis of some genes in the rice xyloglucan glycosyltransferase/hydrolase(XTH)family[D]. Wuhan: Chongqing University, 2012.
|
[46] |
林苏娥, 黄鹂, 曹家树. 阿拉伯半乳糖蛋白在被子植物中的功能[J]. 中国细胞生物学学报, 2011, 33(3):306—312.
|
|
Lin S E, Huang L, Cao J S. The functions of Arabinogalactan-proteins in angiosperms[J]. Chinese Journal of Cell Biology, 2011, 33(3):306—312.
|