[1] |
Mukhopadhyay A, Dutta N, Chattopadhyay D, Chakrabarti K. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase[J]. Bioresource Technology, 2013, 137: 202-208.doi: 10.1016/j.biortech.2013.03.139.
doi: 10.1016/j.biortech.2013.03.139
pmid: 23587821
|
[2] |
Zhang X, Guo J, Ma Y, Lyu L H, Ji Y C, Guo Y F, Hao X M. Green degumming technology of hemp and a comparison between chemical and biological degumming[J]. ACS Omega, 2021, 6(50): 35067-35075.doi: 10.1021/acsomega.1c05831.
doi: 10.1021/acsomega.1c05831
pmid: 34963988
|
[3] |
doi: 10.13475/j.fzxb.20160601505
|
|
Cheng L F, Liu Z C, Feng X Y, Wang Q M, Li Q, Zheng K, Yang Q, Duan S W. Screening on compound pectinase for ramie degumming and its effect analysis[J]. Journal of Textile Research, 2017, 38(6): 64-68.
|
[4] |
Guo F F, Zou M Y, Li X Z, Zhao J, Qu Y B. An effective degumming enzyme from Bacillus sp.Y1 and synergistic action of hydrogen peroxide and protease on enzymatic degumming of ramie fibers[J]. BioMed Research International, 2013, 2013: 212315.doi: 10.1155/2013/212315.
doi: 10.1155/2013/212315
|
[5] |
Yadav P K, Singh V K, Yadav S, Yadav K D S, Yadav D. In silico analysis of pectin lyase and pectinase sequences[J]. Biochemistry Biokhimiia, 2009, 74(9): 1049-1055.doi: 10.1134/s0006297909090144.
doi: 10.1134/s0006297909090144
URL
|
[6] |
Xu H, Duan S W, Feng X Y, Yang Q, Zheng K, Peng Y D, Cheng L F. Improving the thermo-activity and-stability of pectate lyase from Dickeya dadantii DCE-01 for ramie degumming[J]. Processes, 2021, 9(12): 2106.doi: 10.3390/pr9122106.
doi: 10.3390/pr9122106
|
[7] |
Zheng X Y, Zhang Y M, Liu X X, Li C, Lin Y, Liang S L. High-level expression and biochemical properties of A thermo-alkaline pectate lyase from Bacillus sp.RN1 in Pichia pastoris with potential in ramie degumming[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 850.doi: 10.3389/fbioe.2020.00850.
doi: 10.3389/fbioe.2020.00850
URL
|
[8] |
doi: 10.3969/j.issn.1672-3678.2013.06.009
|
|
Xiong B, Ying X X, Chen L N, Xie L P, Wei C, Wang Z. Purification and characterization of alkaline pectate lyase from Paenibacillus sp.WZ008[J]. Chinese Journal of Bioprocess Engineering, 2013, 11(6): 42-46.
|
[9] |
doi: 10.13417/j.gab.035.003076
|
|
Zhou L, Chen H P, Li Z, Huang Q M. Breeding and enzymatic properties of fungi produce pectin lyase[J]. Genomics and Applied Biology, 2016, 35(11): 3076-3082.
|
[10] |
Basu S, Saha M N, Chattopadhyay D, Chakrabarti K. Large-scale degumming of ramie fibre using a newly isolated Bacillus pumilus DKS1 with high pectate lyase activity[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(2): 239-245.doi: 10.1007/s10295-008-0490-y.
doi: 10.1007/s10295-008-0490-y
URL
|
[11] |
Basu S, Roy A, Ghosh A, Bera A, Chattopadhyay D, Chakrabarti K. Arg 235 is an essential catalytic residue of Bacillus pumilus DKS1 pectate lyase to degum ramie fibre[J]. Biodegradation, 2011, 22(1): 153-161.doi: 10.1007/s10532-010-9384-6.
doi: 10.1007/s10532-010-9384-6
URL
|
[12] |
Yu P, Xu C C. Production optimization,purification and characterization of a heat-tolerant acidic pectinase from Bacillus sp.ZJ1407[J]. International Journal of Biological Macromolecules, 2018, 108: 972-980.doi: 10.1016/j.ijbiomac.2017.11.012.
doi: 10.1016/j.ijbiomac.2017.11.012
URL
|
[13] |
doi: 10.13344/j.microbiol.china.200124
|
|
Wang H Z, Lan Y B. Cloning and bioinformatics analysis of pectate lyase PL101 from Phytophthora capsici[J]. Microbiology China, 2020, 47(12): 4021-4028.
|
[14] |
doi: 10.3864/j.issn.0578-1752.2021.19.012
|
|
Xu H H, Li Y, Gao W, Wang Y Q, Liu L C. Cloning and identification of γ-glutamyl transpeptidase AcGGT gene from onion(Allium cepa)[J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
|
[15] |
徐欢, 段盛文, 冯湘沅, 郑科, 杨琦, 汪启明, 成莉凤, 彭源德. 苎麻脱胶果胶裂解酶基因的高效表达及序列分析[J]. 华北农学报, 2021, 36(5): 18-23.doi: 10.7668/hbnxb.20192340.
doi: 10.7668/hbnxb.20192340
|
|
Xu H, Duan S W, Feng X Y, Zheng K, Yang Q, Wang Q M, Cheng L F, Peng Y D. High level expression of pectate lyase gene from microbiology for ramie degumming and its bioinformatics analysis[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 18-23.
doi: 10.7668/hbnxb.20192340
|
[16] |
Manasaryan G, Suplatov D, Pushkarev S, Drobot V, Kuimov A, Švedas V, Nilov D. Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose)polymerase family proteins[J]. Cancers, 2021, 13(6): 1201.doi: 10.3390/cancers13061201.
doi: 10.3390/cancers13061201
URL
|
[17] |
Scavetta R D, Herron S R, Hotchkiss A T, Kita N, Keen N T, Benen J A E, Kester H C M, Visser J, Jurnak F. Structure of a plant cell wall fragment complexed to pectate lyase C[J]. The Plant Cell, 1999, 11(6): 1081-1092.doi: 10.1105/tpc.11.6.1081.
doi: 10.1105/tpc.11.6.1081
URL
|
[18] |
Lietzke S E, Scavetta R D, Yoder M D, Jurnak F. The refined three-dimensional structure of pectate lyase E from Erwinia chrysanthemi at 2.2 A resolution[J]. Plant Physiology, 1996, 111(1): 73-92.doi: 10.1104/pp.111.1.73.
doi: 10.1104/pp.111.1.73
pmid: 12226275
|
[19] |
Flores-Fernández C N, Cárdenas-Fernández M, Lye G J, Ward J M. Synergistic action of thermophilic pectinases for pectin bioconversion into D-galacturonic acid[J]. Enzyme and Microbial Technology, 2022, 160: 110071.doi: 10.1016/j.enzmictec.2022.110071.
doi: 10.1016/j.enzmictec.2022.110071
URL
|
[20] |
Zeng Z, Zhu S Y, Wang Y Z, Bai X H, Liu C, Chen J R, Zhang T, Wei Y P, Li F, Bao Z G, Yan L, Wang H Y, Liu T M. Resequencing of 301 ramie accessions identifies genetic loci and breeding selection for fibre yield traits[J]. Plant Biotechnology Journal, 2022, 20(2): 323-334.doi: 10.1111/pbi.13714.
doi: 10.1111/pbi.13714
URL
|
[21] |
Tang W, Li A Q, Yin J Y, Nie S P. Structural characteristics of three pectins isolated from white kidney bean[J]. International Journal of Biological Macromolecules, 2021, 182: 2151-2161.doi: 10.1016/j.ijbiomac.2021.05.154.
doi: 10.1016/j.ijbiomac.2021.05.154
URL
|
[22] |
Fan P, He F, Yang Y, Ao M Z, Ouyang J, Liu Y, Yu L J. In-situ microbial degumming technology with Bacillus sp.HG-28 for industrial production of ramie fibers[J]. Biochemical Engineering Journal, 2015, 97: 50-58.doi: 10.1016/j.bej.2014.12.010.
doi: 10.1016/j.bej.2014.12.010
URL
|
[23] |
Hadj Sassi A, Trigui-Lahiani H, Abdeljalil S, Gargouri A. Enhancement of solubility,purification and inclusion-bodies-refolding of an active pectin lyase from penicillium occitanis expressed in Escherichia coli[J]. International Journal of Biological Macromolecules, 2017, 95: 256-262.doi: 10.1016/j.ijbiomac.2016.11.036.
doi: S0141-8130(16)32384-4
pmid: 27845226
|
[24] |
Amin F, Bhatti H N, Bilal M. Recent advances in the production strategies of microbial pectinases-A review[J]. International Journal of Biological Macromolecules, 2019, 122: 1017-1026.doi: 10.1016/j.ijbiomac.2018.09.048.
doi: S0141-8130(18)32918-0
pmid: 30217646
|
[25] |
Akita M, Suzuki A, Kobayashi T, Ito S, Yamane T. The first structure of pectate lyase belonging to polysaccharide lyase family 3[J]. Acta Crystallographica Section D Biological Crystallography, 2001, 57(12): 1786-1792.doi: 10.1107/s0907444901014482.
doi: 10.1107/s0907444901014482
URL
|
[26] |
Mehmood T, Saman T, Irfan M, Anwar F, Ikram M S, Tabassam Q. Pectinase production from Schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation[J]. Waste and Biomass Valorization, 2019, 10(9): 2527-2536.doi: 10.1007/s12649-018-0279-9.
doi: 10.1007/s12649-018-0279-9
|
[27] |
Jenkins J, Shevchik V E, Hugouvieux-Cotte-Pattat N, Pickersgill R W. The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi[J]. Journal of Biological Chemistry, 2004, 279(10): 9139-9145.doi: 10.1074/jbc.M311390200.
doi: 10.1074/jbc.M311390200
pmid: 14670977
|
[28] |
Seyedarabi A, To T T, Ali S, Hussain S, Fries M, Madsen R, Clausen M H, Teixteira S, Brocklehurst K, Pickersgill R W. Structural insights into substrate specificity and the anti beta-elimination mechanism of pectate lyase[J]. Biochemistry, 2010, 49(3): 539-546.doi: 10.1021/bi901503g.
doi: 10.1021/bi901503g
pmid: 20000851
|