[1] |
Sabagh A E, Hossain A, Barutçular C, Islam M S, Ratnasekera D, Kumar N, Meena R S, Gharib H S, Saneoka H, da Silva J A T. Drought and salinity stress management for higher and sustainable canola( Brassica napus L.) production:a critical review[J]. Australian Journal of Crop Science, 2019, 13(1):88—97.doi: 10.21475/ajcs.19.13.01.p1284.
|
[2] |
Swiontek Brzezinska M, S'wiᶏtczak J, Wojciechowska A, Burkowska-But A, Kalwasińska A. Consortium of plant growth-promoting rhizobacteria enhances oilseed rape( Brassica napus L.) growth under normal and saline conditions[J]. Archives of Microbiology, 2022, 204(7):393.doi: 10.1007/s00203-022-03018-1.
pmid: 35704071
|
[3] |
Xiao F, Zhou H P. Plant salt response:perception,signaling,and tolerance[J]. Frontiers in Plant Science, 2023, 13:1053699.doi: 10.3389/fpls.2022.1053699.
|
[4] |
Zhang G F, Zhou J Z, Peng Y, Tan Z D, Zhang Y T, Zhao H, Liu D X, Liu X, Li L, Yu L Q, Jin C, Fang S, Shi J W, Geng Z D, Yang S J, Chen G X, Liu K D, Yang Q Y, Feng H, Guo L, Yang W N. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus[J]. Plant,Cell & Environment, 2023, 46(2):549—566.doi: 10.1111/pce.14485.
|
[5] |
Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. Response of leaf carbon metabolism and dry matter accumulation to density and row spacing in two rapeseed( Brassica napus L.) genotypes with differing plant architectures[J]. The Crop Journal, 2022, 10(3):680—691.doi: 10.1016/j.cj.2021.10.006.
|
[6] |
Wan H P, Qian J L, Zhang H, Lu H C, Li O Q, Li R H, Yu Y, Wen J, Zhao L, Yi B, Fu T D, Shen J X. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of Huayouza 62,an elite cultivar in rapeseed( Brassica napus L.)[J]. International Journal of Molecular Sciences, 2022, 23(3):1279.doi: 10.3390/IJMS23031279.
|
[7] |
Wang C F, Han G L, Qiao Z Q, Li Y X, Yang Z R, Wang B S. Root Na + content negatively correlated to salt tolerance determines the salt tolerance of Brassica napus L.inbred seedlings[J]. Plants, 2022, 11(7):906.doi: 10.3390/plants11070906.
|
[8] |
Wang L, Liu F, Ju L Y, Xue B, Wang Y F, Wang D J, Hou D Y. Genome structures and evolution analysis of Hsp90 gene family in Brassica napus reveal the possible roles of members in response to salt stress and the infection of Sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2022, 13:854034.doi: 10.3389/fpls.2022.854034.
|
[9] |
|
[10] |
Shu J B, Ma X, Ma H, Huang Q R, Zhang Y, Guan M, Guan C Y. Transcriptomic,proteomic,metabolomic,and functional genomic approaches of Brassica napus L.during salt stress[J]. PLoS One, 2022, 17(3):e0262587.doi: 10.1371/journal.pone.0262587.
|
[11] |
Wang L, Zuo Q S, Zheng J D, You J J, Yang G, Leng S H. Salt stress decreases seed yield and postpones growth process of canola( Brassica napus L.) by changing nitrogen and carbon characters[J]. Scientific Reports, 2022, 12(1):17884.doi: 10.1038/s41598-022-22815-8.
|
[12] |
Jin J J, Sun W C, Wu J Y, Fang Y, Li X C, Ma L, Liu L J, Zeng R. Hypocotyl elongation based on HY5 transcription factor in cold resistant winter rapeseed( Brassica napus L.)[J]. Oil Crop Science, 2022, 7(1):40—52.doi: 10.1016/j.ocsci.2022.02.005.
|
[13] |
Fan X X, Bian Z H, Song B, Xu H. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi( Brassica campestris L.)[J]. Journal of Integrative Agriculture, 2022, 21(4):1015—1027.doi: 10.1016/s2095-3119(21)63784-x.
|
[14] |
|
|
Fang Y, Yue C, Li J, Guo Y Y, Wang M L. Expression pattern and abiotic stress response analysis of BnHY5 in Brassica napus L.[J]. Journal of Sichuan University(Natural Science Edition), 2020, 57(2):391—399.
|
[15] |
|
|
Li B, Lü Y, Yang M X, Song T, Yu F, Liu Z W. Effects of saline-alkali stress on physiology and molecular mechanism of Brassica napus L.[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3):86—93.
|
[16] |
Wang W C, Zhang F H, Sun L P, Yang L, Yang Y, Wang Y J, Siddique K H M, Pang J Y. Alkaline salt inhibits seed germination and seedling growth of canola more than neutral salt[J]. Frontiers in Plant Science, 2022, 13:814755.doi: 10.3389/fpls.2022.814755.
|
[17] |
万何平, 余忆, 陈敬东, 鲁金春子, 冉景鸿, 戴希刚, 文静, 傅廷栋, 沈金雄, 曾长立. 甘蓝型油菜耐盐碱性快速鉴定方法与应用[J]. 中国油料作物学报, 2023, 45(4):776—784.doi: 10.19802/j.issn.1007-9084.2022150.
|
|
Wan H P, Yu Y, Chen J D, Lu J C Z, Ran J H, Dai X G, Wen J, Fu T D, Shen J X, Zeng C L. Establishment of salt-alkali tolerant identification system and selection of salt-alkali tolerant germplasm in rapeseeds(Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(4):776—784.
|
[18] |
Yang J H, Qu X, Li T, Gao Y X, Du H N, Zheng L J, Ji M C, Zhang P F, Zhang Y, Hu J X, Liu L Y, Lu Z F, Yang Z J, Zhang H Y, Yang J P, Jiao Y Q, Zheng X. HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis[J]. Journal of Integrative Plant Biology, 2023, 65(1):45—63.doi: 10.1111/jipb.13372.
|
[19] |
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development[J]. Current Topics in Developmental Biology,2010, 91:29—66. doi: 10.1016/S0070-2153(10)91002-8.
|
[20] |
Dong F X, Wang Y H, Tao J, Xu T Y, Tang M. Arbuscular mycorrhizal fungi affect the expression of PxNHX gene family,improve photosynthesis and promote Populus simonii× P.nigra growth under saline-alkali stress[J]. Frontiers in Plant Science, 2023, 14:1104095.doi: 10.3389/fpls.2023.1104095.
|
[21] |
Gu J J, Zhao H W, Jia Y, Hu B W, Wang Z Q, Qu Z J, Yu F L. Effect of salt stress on nitrogen assimilation of functional leaves and root system of rice in cold region[J]. Journal of Northeast Agricultural University(English Edition), 2020, 27(2):9—16.
|
[22] |
|
|
Wang Y B, Cheng H T, Ma Z H, Lü W Y. Effects of magnesium application on quality of different types of japonica rice varieties[J]. Journal of Hebei Agricultural University, 2020, 43(3):23—28,44.
|
[23] |
Solis C A, Yong M T, Zhou M X, Venkataraman G, Shabala L, Holford P, Shabala S, Chen Z H. Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza[J]. International Journal of Molecular Sciences, 2022, 23(4):2092.doi: 10.3390/ijms23042092.
|
[24] |
|
|
Zhang H, Li Z, Guo K, Hao Y R. Construction and stress resistance analysis of Trichoderma viride engineering strain overexpressing TvTPS/TPP gene encoding trehalose bifunctional synthase[J]. Shandong Agricultural Sciences, 2022, 54(5):1—9.
|
[25] |
|
|
Sun Q G, Jiang S H, Fang H C, Zhang T L, Wang N, Chen X S. Cloning of MdNAC9 and functional of its regulation on flavonol synthesis[J]. Acta Horticulturae Sinica, 2019, 46(11):2073—2081.
|