[1] |
|
|
Zeng A S, Xia P F, Yan J Y, Xu Y Y, Xing M M, Lu Y Y. Analysis on market demand changes of cabbage cultivars in China[J]. Journal of Changjiang Vegetables, 2022(8):1-3.
|
[2] |
|
|
Pu Z J, Zhang Y J, Liu D, Dai L T, Wang W B. Research progress in biological control strategies for Fusarium wilt of cucumber[J]. China Vegetables, 2011(6):9-14.
|
[3] |
|
|
Wang Y F, Lu Y, Li E F. Crude extracts of ginger and garlic:inhibition on cabbage Fusarium wilt[J]. Chinese Agricultural Science Bulletin, 2020, 36(16):128-134.
|
[4] |
|
|
Li M Y, Zhang T T, Li X H, Yan H. Fusarium wilt disease on curcifer vegetable and its pathogenic identification[J]. Plant Protection, 2003, 29(3):44-45.
|
[5] |
|
|
Lu Y, Wang Y F, Tian X L, Li E F. Preliminary study on the inhibitory effect of onion crude extrats on Fusarium oxysporum f.sp.conglutinans[J]. Tianjin Agricultural Sciences, 2020, 26(5):71-75.
|
[6] |
Ling J, Dong X, Ping X X, Li Y, Yang Y H, Zhao J L, Lu X F, Xie B Y, Mao Z C. Genetic diversity and population structure of Fusarium oxysporum f.sp. conglutinans race 1 in Northern China samples[J]. Journal of Fungi, 2022, 8(10):1089.doi: 10.3390/jof8101089.
|
[7] |
|
|
Li Q, Su Y B, Wang Y, Gu L Q, Zhang G L, Zhao Y Q, Shi Y L. Breeding of a new cabbage cultivar YR Lüjingang for growing in spring and autumn[J]. China Cucurbits and Vegetables, 2024, 37(3):172-176.
|
[8] |
|
|
Chen Y Y, Li H X, Zhang H Y, Xu S J, Liu Y G. Identification of Bacillus atrophaeus MQ19ST15 and its control efficacy against Fusarium wilt on potted cabbage plants[J]. Plant Protection, 2021, 47(5):64-71.
|
[9] |
|
|
Ma J B. Determination of trifluoromethane pesticide residues in cabbage by gas chromatography[J]. Tianjin Agricultural Sciences, 2022, 28(11):49-54.
|
[10] |
|
|
Lu F C, Zhang J F, Zhang Z G. Current situation and difficulties of integrated control of vegetable diseases in vegetable production[J]. Tianjin Agricultural Sciences, 2003, 9(2):51-53.
|
[11] |
郑旭蕊. 复合微生物菌剂的研制及其对尖孢镰刀菌防治效果研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
Zheng X R. Study on the preparation of compound microbial agent and its control effect on Fusarium oxysporum[D]. Harbin: Harbin Institute of Technology, 2021.
|
[12] |
Zuriegat Q, Zheng Y R, Liu H, Wang Z H, Yun Y Z. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum[J]. Molecular Plant Pathology, 2021, 22(7):882-895.doi: 10.1111/mpp.13068.
pmid: 33969616
|
[13] |
Mitsis T, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos G, Eliopoulos E. Transcription factors and evolution:an integral part of gene expression (review)[J]. World Academy of Sciences Journal, 2020, 2(1):3-8.doi: 10.3892/wasj.2020.32.
|
[14] |
Guo Y, Chen Z H, Li H, Zhang S P. The CfSnt2-dependent deacetylation of histone H3 mediates autophagy and pathogenicity of Colletotrichum fructicola[J]. Journal of Fungi, 2022, 8(9):974.doi: 10.3390/jof8090974.
|
[15] |
Lawrence M, Daujat S, Schneider R. Lateral thinking:how histone modifications regulate gene expression[J]. Trends in Genetics, 2016, 32(1):42-56.doi: 10.1016/j.tig.2015.10.007.
pmid: 26704082
|
[16] |
Singh R K, Gonzalez M, Kabbaj M M, Gunjan A. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae[J]. PLoS One, 2012, 7(5):e36295.doi: 10.1371/journal.pone.0036295.
|
[17] |
Pfannenstiel B T, Greco C, Sukowaty A T, Keller N P. The epigenetic reader SntB regulates secondary metabolism,development and global histone modifications in Aspergillus flavus[J]. Fungal Genetics and Biology, 2018, 120:9-18.doi: 10.1016/j.fgb.2018.08.004.
pmid: 30130575
|
[18] |
|
|
Chen Z H, Li H, Chen J Y, Chen X D, Luo J, Zhang S P. Histone deacetylase CfSnt2 regulates the growth,development and pathogenicity of Colletotrichum fructicola[J]. Mycosystema, 2022, 41(6):926-938.
|
[19] |
Turgeon B G, Garber R C, Yoder O C. Development of a fungal transformation system based on selection of sequences with promoter activity[J]. Molecular and Cellular Biology, 1987, 7(9): 3297-3305. doi: 10.1128/mcb.7.9.3297-3305.1987.
pmid: 2823126
|
[20] |
|
|
Li C Y, Hou Z M. Folcdc15 gene involved in the conidiogenesis and hyphal growth in Fusarium oxysporum f.sp.lini[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(6):175-183.
|
[21] |
马胜男, 张浩然, 王悦, 张煦杭, 黄亚娸, 王江旭, 胡振帮, 辛大伟, 陈庆山, 王锦辉. 根瘤菌Ⅲ型效应因子NopAA的突变及其对大豆共生结瘤的影响[J]. 中国油料作物学报, 2023, 45(4):720-727.doi: 10.19802/j.issn.1007-9084.2022153.
|
|
Ma S N, Zhang H R, Wang Y, Zhang X H, Huang Y Q, Wang J X, Hu Z B, Xin D W, Chen Q S, Wang J H. Mutation of NopAA in rhizobia and its effect on nodulation in soybean[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(4):720-727.
|
[22] |
Li E F, Xiao J L, Yang Y H, Xie B Y, Mao Z C. The subunit Nto1 of the NuA3 complex is associated with conidiation,oxidative stress response,and pathogenicity in Fusarium oxysporum[J]. Horticulturae, 2022, 8(6):540.doi: 10.3390/horticulturae8060540.
|
[23] |
|
|
Wang X L, Wang B X, Li E F. Construction and phenotypic analysis of deletion mutant of mitochondrial outer membrane transporter subunit Tom7 in Fusarium oxysporum f.sp.conglutinans[J]. Journal of Sichuan Agricultural University, 2023, 41(1):54-60.
|
[24] |
|
|
Wang T, Wang B X, Li S Y, Yu J, Li E F. Functional study of a β-glucosidase Foglu1 in Fusarium oxysporum f.sp.conglutinans[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2):373-382.
|
[25] |
Baker L A, Ueberheide B M, Dewell S, Chait B T, Zheng D Y, Allis C D. The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress[J]. Molecular and Cellular Biology, 2013, 33(19):3735-3748.doi: 10.1128/mcb.00025-13.
pmid: 23878396
|
[26] |
He M, Xu Y P, Chen J H, Luo Y, Lyu Y, Su J, Kershaw M J, Li W T, Wang J, Yin J J, Zhu X B, Liu X H, Chern M, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Wang W M, Ren Z L, Wu X J, Li P, Li S G, Peng Y L, Lin F C, Talbot N J, Chen X W. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae[J]. Autophagy, 2018, 14(9):1543-1561.doi: 10.1080/15548627.2018.1458171.
|
[27] |
|
|
Zhu T T. Salicylic acid regulates the pathogenicity of Fusarium oxysporum by inhibiting the FoTOR signaling pathway[D]. Chongqing: Chongqing University, 2020.
|