[1] |
doi: 10.16742/j.zgcdxb.20200275
|
|
Wang Z H, Fang X L. The research on genetic diversity of Fusarium oxysporum[J]. Chinese Journal of Grassland, 2021, 43(5):106-114.
|
[2] |
Priyanka K, Dubey S C, Singh A K. Conventional and real-time PCR assays for specific detection and quantification of Fusarium oxysporum f.sp.ciceris in plants using intergenic spacer region-based marker[J]. Biologia, 2015, 70(3):314-319.doi: 10.1515/biolog-2015-0041.
doi: 10.1515/biolog-2015-0041
URL
|
[3] |
Almasi M A. Development of a colorimetric loop-mediated isothermal amplification assay for the visual detection of Fusarium oxysporum f.sp.Melonis[J]. Horticultural Plant Journal, 2019, 5(3):129-136.doi: 10.1016/j.hpj.2019.01.004.
doi: 10.1016/j.hpj.2019.01.004
URL
|
[4] |
Zhang L, Guo Y, Wang Y Y, Tang W H, Zheng S J. Construction of PEG-mediated genetic transformation and gene knockout system in Fusarium oxysporum f.sp.cubense tropic race 4[J]. Agricultural Biotechnology 2020, 9(1):15-17,21.doi: 10.19759/j.cnki.2164-4993.2020.01.005.
doi: 10.19759/j.cnki.2164-4993.2020.01.005
|
[5] |
Portal González N, Soler A, Ribadeneira C, Solano J, Portieles R, Herrera Isla L, Companioni B, Borras-Hidalgo O, Santos Bermudez R. Phytotoxic metabolites produce by Fusarium oxysporum f.sp.cubense Race 2[J]. Frontiers in Microbiology, 2021, 12:629395.doi: 10.3389/fmicb.2021.629395.
doi: 10.3389/fmicb.2021.629395
URL
|
[6] |
Li J M, Fokkens L, Dam P V, Rep M. Related mobile pathogenicity chromosomes in Fusarium oxysporum determine host range on cucurbits[J]. Molecular Plant Pathology, 2020, 21(6):761-776.doi: 10.1111/mpp.12927.
doi: 10.1111/mpp.12927
URL
|
[7] |
Johnson E T, Bowman M J, Dunlap C A. Brevibacillus fortis NRS-1210 produces edeines that inhibit the in vitro growth of conidia and chlamydospores of the onion pathogen Fusarium oxysporum f.sp.cepae[J]. Antonie Van Leeuwenhoek, 2020, 113(7):973-987.doi: 10.1007/s10482-020-01404-7.
doi: 10.1007/s10482-020-01404-7
pmid: 32279200
|
[8] |
Burkhardt A, Henry P M, Koike S T, Gordon T R, Martin F. Detection of Fusarium oxysporum f.sp.fragariae from infected strawberry plants[J]. Plant Disease, 2019, 103(5):1006-1013.doi: 10.1094/pdis-08-18-1315-re.
doi: 10.1094/PDIS-08-18-1315-RE
pmid: 30946629
|
[9] |
Divband K, Shokri H, Khosravi A R. Down-regulatory effect of Thymus vulgaris L.on growth and Tri4 gene expression in Fusarium oxysporum strains[J]. Microbial Pathogenesis, 2017, 104:1-5.doi: 10.1016/j.micpath.2017.01.011.
doi: S0882-4010(16)30742-2
pmid: 28062283
|
[10] |
Mazzola M, Manici L M. Apple replant disease:Role of microbial ecology in cause and control[J]. Annual Review of Phytopathology, 2012, 50:45-65.doi: 10.1146/annurev-phyto-081211-173005.
doi: 10.1146/annurev-phyto-081211-173005
pmid: 22559069
|
[11] |
doi: 10.13417/j.gab.036.000630
|
|
Wang X, Cui Y P, Wang J H, Zhang M Q. Construction of T-DNA insertion mutants of Fusarium moniliforme-pathogen fungi of pokkahboeng via Agrobacterium tumefaciens-mediated transformation and appraisal analysis of insertion mutants[J]. Genomics and Applied Biology, 2017, 36(2):630-637.
|
[12] |
Wang S, Chen H, Wang Y, Pan C, Tang X, Zhang H, Chen W, Chen Y Q. Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina[J]. Letters in Applied Microbiology, 2020, 70(5):388-393.doi: 10.1111/lam.13286.
doi: 10.1111/lam.13286
pmid: 32077122
|
[13] |
Li D D, Wei X Q, Liu T G, Liu C Z, Chen W Q, Xuan Y H, Gao L. Establishment of an Agrobacterium tumefaciens-mediated transformation system for Tilletia foetida[J]. Journal of Microbiological Methods, 2020, 169:105810.doi: 10.1016/j.mimet.2019.105810.
doi: 10.1016/j.mimet.2019.105810
URL
|
[14] |
doi: 10.13346/j.mycosystema.120109
|
|
Zou Q J, Wang S T, Liang K J, Wang Y N, Hu T L, Han Z Q, Cao K Q. Suspected pathogenic Fusarium spp.isolated from apple orchard soils in Hebei Province[J]. Mycosystema, 2014, 33(5):976-983.
|
[15] |
Colombo C V, Menin L, Clerici M. Alkaline denaturing Southern Blot analysis to monitor double-strand breakprocessing[J]. Methods in Molecular Biology, 2018, 1672:131-145.doi: 10.1007/978-1-4939-7306-4_11.
doi: 10.1007/978-1-4939-7306-4_11
|
[16] |
Jia X B, Lin X J, Chen J C. Linear and exponential TAIL-PCR:A method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites[J]. AMB Express, 2017, 7(1):195.doi: 10.1186/s13568-017-0495-x.
doi: 10.1186/s13568-017-0495-x
URL
|
[17] |
冯泽庆. 根癌农杆菌介导尖孢镰刀菌T-DNA插入突变的研究[D]. 长春: 吉林大学, 2018.
|
|
Feng Z Q. Analysis of Fusarium oxysporum based on the Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis[D]. Changchun: Jilin University, 2018.
|
[18] |
doi: 10.19662/j.cnki.issn1005-2755.2018.05.005
|
|
Chen H Y, Huang F, Chen Q, Fang Z P, Huang W S. High-efficiency thermal asymmetric interlaced PCR for amplification of flanking sequence of transgenic Papaya lines[J]. Plant Quarantine, 2018, 32(5):24-27.
|
[19] |
doi: 10.3969/j.issn.1006-9690.2016.04.006
|
|
Tian L, Guo Y J, Ren L, Wang Y, Sun F, Qi H K, Ma N, Qi X L. Analysis of At1g52910 mutant flanking sequence by TAIL-PCR[J]. Chinese Wild Plant Resources, 2016, 35(4):23-25.
|
[20] |
Yan Y Q, Tang J T, Yuan Q F, Gu Q N, Liu H, Huang J B, Hsiang T, Zheng L. ChCDC25 regulates infection-related morphogenesis and pathogenicity of the crucifer anthracnose fungus Colletotrichum higginsianum[J]. Frontiers in Microbiology, 2020, 11:763.doi: 10.3389/fmicb.2020.00763.
doi: 10.3389/fmicb.2020.00763
URL
|
[21] |
doi: 10.3969/j.issn.1000-4440.2015.03.009
|
|
Liang M, Deng S, Zhang X, Lin L. Construction of T-DNA inserted transformation library of sclerotium type Verticillium dahliae strain and screening of mutants with abnormal micro-sclerotia development[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(3):520-525.
|
[22] |
doi: 10.7606/j.issn.1004-1389.2017.01.018
|
|
Feng H, Cheng M M, Zhang M, Gao X N, Huang L L. Screening of growth-related mutants of Valsa mali and analysis of flanking sequence[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(1):144-151.
|
[23] |
Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B. The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism[J]. Molecular Plant, 2015, 8(11):1651-1664.doi: 10.1016/j.molp.2015.08.011.
doi: 10.1016/j.molp.2015.08.011
pmid: 26343971
|