[1] |
doi: 10.11843/j.issn.0366-6964.2018.09.009
|
|
Fu Y F, Li L, Zhao W M, Fang X M, Li B X, Wang X M, Zhou L S, Ren S W. Differentially expressed genes analysis between mid-implantation and post-implantation in porcine ovary by RNA sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(9):1879-1888.
|
[2] |
doi: 10.11843/j.issn.0366-6964.2018.09.023
|
|
He M L, Wang C J, Jia Z F, Si M, Ao R. The effect of nisin on intestinal flora in diarrheal mice analyzed by high-throughput sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(9):2015-2024.
|
[3] |
Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.doi: 10.1038/nrg2484.
doi: 10.1038/nrg2484
URL
|
[4] |
赵珺. 内蒙古绒山羊骨骼肌肌肉差异研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
|
|
Zhao J. Differential analysis of Inner Mongolian cashmere skeletal muscle[D]. Hohhot: Inner Mongolia Agricultural University, 2015.
|
[5] |
doi: 10.3864/j.issn.0578-1752.2019.01.013
|
|
Li Y, Chen M M, Zhang J X, Zhang L L, Li X, Guo H, Ding X B, Liu X F. Effects of bovine LncRNA-133a on the proliferation and differentiation of skeletal muscle satellite cells[J]. Scientia Agricultura Sinica, 2019, 52(1):143-153.
|
[6] |
王位, 付绍印, 何小龙, 王艳欣, 王月星, 王标, 刘斌, 刘永斌, 张文广. 基于RNA-Seq技术挖掘绵羊背最长肌肉质性状相关基因[J]. 中国畜牧兽医, 2018, 45(1):122-130.doi: 10.16431/j.cnki.1671-7236.2018.01.016.
doi: 10.16431/j.cnki.1671-7236.2018.01.016
|
|
Wang W, Fu S Y, He X L, Wang Y X, Wang Y X, Wang B, Liu B, Liu Y B, Zhang W G. Excavation of meat quality related genes in longissimus dorsi of sheep by RNA-Seq[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(1):122-130.
|
[7] |
孟祥忍, 张成龙, 樊永亮, 王文强, 毛永江, 黄必志, 亏开兴, 杨章平. 基于RNA-Seq转录组测序技术揭示南方黄牛肉质嫩度调控相关的分子机制[J]. 中国畜牧杂志, 2017, 53(9):26-32,68.doi: 10.19556/j.0258-7033.2017-09-026.
doi: 10.19556/j.0258-7033
|
|
Meng X R, Zhang C L, Fan Y L, Wang W Q, Mao Y J, Huang B Z, Kui K X, Yang Z P. Molecular mechanism analysis of meat tenderness in Chinese south cattle based on RNA-Seq transcriptome sequencing technology[J]. Chinese Journal of Animal Science, 2017, 53(9):26-32,68.
|
[8] |
doi: 10.3969/j.issn.1674-7968.2020.04.011
|
|
Zhao W M, Wu H G, Wu J H, Wang G F, Gao S X. Analysis of differentially expressed genes related to fat deposition in simmental and Angus cattle(Bos taurus)based on transcriptome sequencing[J]. Journal of Agricultural Biotechnology, 2020, 28(4):693-701.
|
[9] |
doi: 10.11843/j.issn.0366-6964.2015.08.004
|
|
Meng X R, Du C, Wang J, Fu S Y, Zheng Z Q, Zhang W G, Li J Q. RNA-Seq approach for identifying candidate genes of meat quality in goats[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(8):1300-1307.
|
[10] |
doi: 10.3864/j.issn.0578-1752.2019.14.011
|
|
Liu Y, Li W Y, Wu X F, Huang Q L, Gao C F, Chen X Z, Zhang X P. Transcriptome analysis of differentially gene expression associated with longissimus Doris tissue in Fuqing goat and Nubian black goat[J]. Scientia Agricultura Sinica, 2019, 52(14):2525-2537.
|
[11] |
Mundi P S, Sachdev J, McCourt C, Kalinsky K. AKT in cancer:New molecular insights and advances in drug development[J]. British Journal of Clinical Pharmacology, 2016, 82(4):943-956.doi: 10.1111/bcp.13021.
doi: 10.1111/bcp.13021
URL
|
[12] |
Chen D, Mauvais-Jarvis F, Bluher M, Fisher S J, Jozsi A, Goodyear L J, Ueki K, Kahn C R. p50alpha/p55alpha phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity[J]. Molecular and Cellular Biology, 2004, 24(1):320-329.doi: 10.1128/MCB.24.1.320-329.2004.
doi: 10.1128/MCB.24.1.320-329.2004
URL
|
[13] |
Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr G A, Backer J M. Regulation of the p85/p110 phosphatidylinositol 3'-kinase:Stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit[J]. Molecular and Cellular Biology, 1998, 18(3):1379-1387.doi: 10.1128/MCB.18.3.1379.
doi: 10.1128/MCB.18.3.1379
pmid: 9488453
|
[14] |
Gao Y, Su P Z, Wang C Q, Zhu K Q, Chen X L, Liu S D, He J M. The role of PTEN in chronic growth hormone-induced hepatic insulin resistance[J]. PLoS One, 2013, 8(6):e68105.doi: 10.1371/journal.pone.0068105.
doi: 10.1371/journal.pone.0068105
URL
|
[15] |
Brodbeck D, Cron P, Hemmings B A. A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain[J]. The Journal of Biological Chemistry, 1999, 274(14):9133-9136.doi: 10.1074/jbc.274.14.9133.
doi: 10.1074/jbc.274.14.9133
URL
|
[16] |
doi: 10.1023/B:APPT.0000045801.15585.dd
pmid: 15505410
|
[17] |
doi: 10.16038/j.1000-6710.2020.11.013
|
|
Lü X, Zhou D A. Research progress on the effect of PI3K/AKT signaling pathway on skeletal muscle regeneration[J]. Chinese Journal of Sports Medicine, 2020, 39(11):908-912.
|
[18] |
doi: 10.3969/j.issn.1004-0242.2007.01.014
|
|
Huang Y P, Lin J H, Lin Z X. The role of integrin αvβ3 in tumor angiogenisis[J]. China Cancer, 2007, 16(1):35-38.
|
[19] |
马春辉. 大鼠内侧副韧带损伤恢复期时间序列基因表达及候选基因挖掘分析[D]. 南京: 南京医科大学, 2019.
|
|
Ma C H. Analysis for time series geneexpression profiles and candidate genes during recovery phase of severed rat medial collateral ligament[D]. Nanjing: Nanjing Medical University, 2019.
|
[20] |
陈静涛, 徐政, 顾其胜. 胶原蛋白研发的最新进展[J]. 上海生物医学工程, 2004, 25(2):52-55,47.
|
|
Chen J T, Xu Z, Gu Q S. Progress in research and development on collagens[J]. Shanghai Journal of Biomedical Engineering, 2004, 25(2):52-55,47.
|
[21] |
Morgan M J, Madgwick A J A. The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle[J]. Biochemical and Biophysical Research Communications, 1999, 255(2):245-250.doi: 10.1006/bbrc.1999.0179.
doi: 10.1006/bbrc.1999.0179
pmid: 10049693
|
[22] |
Coghill I D, Brown S, Cottle D L, McGrath M J, Robinson P A, Nandurkar H H, Dyson J M, Mitchell C A. FHL3 is an actin-binding protein that regulates α-actinin-mediated actin bundling:FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly[J]. Journal of Biological Chemistry, 2003, 278(26):24139-24152.doi: 10.1074/jbc.m213259200.
doi: 10.1074/jbc.M213259200
pmid: 12704194
|
[23] |
Damon M, Denieul K, Vincent A, Bonhomme N, Wyszynska-Koko J, Lebret B. Associations between muscle gene expression pattern and technological and sensory meat traits highlight new biomarkers for pork quality assessment[J]. Meat Science, 2013, 95(3):744-754.doi: 10.1016/j.meatsci.2013.01.016.
doi: 10.1016/j.meatsci.2013.01.016
URL
|
[24] |
Rohrer G A, Nonneman D J, Miller R K, Zerby H, Moeller S J. Association of single nucleotide polymorphism(SNP)markers in candidate genes and QTL regions with pork quality traits in commercial pigs[J]. Meat Science, 2012, 92(4):511-518.doi: 10.1016/j.meatsci.2012.05.020.
doi: 10.1016/j.meatsci.2012.05.020
pmid: 22688438
|
[25] |
Saremi A, Gharakhanloo R, Sharghi S, Gharaati M R, Larijani B, Omidfar K. Effects of oral creatine and resistance training on serum myostatin and GASP-1[J]. Molecular and Cellular Endocrinology, 2010, 317(1/2):25-30.doi: 10.1016/j.mce.2009.12.019.
doi: 10.1016/j.mce.2009.12.019
URL
|
[26] |
孙玲. 猪中受Myostatin调节的FS家族基因和TEF-1靶基因的克隆及功能研究[D]. 武汉: 华中农业大学, 2011.
|
|
Sun L. Cloning and functional analysis of porcine FS domain family genes being regulated by myostatin and TEF-1 targeting genes[D]. Wuhan: Huazhong Agricultural University, 2011.
|
[27] |
Wang J Q, Zhou H T, Fang Q, Liu X, Luo Y Z, Hickford J G H. Effect of variation in ovine WFIKKN2 on growth traits appears to be gender-dependent[J]. Scientific Reports, 2015, 5(1):12347.doi: 10.1038/srep12347.
doi: 10.1038/srep12347
URL
|
[28] |
Kondoh H, Kamachi Y. SOX-partner code for cell specification:Regulatory target selection and underlying molecular mechanisms[J]. The International Journal of Biochemistry & Cell Biology, 2010, 42(3):391-399.doi: 10.1016/j.biocel.2009.09.003.
doi: 10.1016/j.biocel.2009.09.003
URL
|
[29] |
Sluijter J P G, van Mil A, van Vliet P, Metz C H G, Liu J, Doevendans P A, Goumans M J. microRNA-1 and-499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells[J]. Arteriosclerosis,Thrombosis,and Vascular Biology, 2010, 30(4):859-868.doi: 10.1161/ATVBAHA.109.197434.
doi: 10.1161/ATVBAHA.109.197434
URL
|
[30] |
Hagiwara N, Klewer S E, Samson R A, Erickson D T, Lyon M F, Brilliant M H. Sox6 is a candidate gene for p100H myopathy,heart block,and sudden neonatal death[J]. PNAS, 2000, 97(8):4180-4185.doi: 10.1073/pnas.97.8.4180.
doi: 10.1073/pnas.97.8.4180
pmid: 10760285
|
[31] |
Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung U I. The combination of SOX5,SOX6,and SOX9(the SOX trio)provides signals sufficient for induction of permanent cartilage[J]. Arthritis and Rheumatism, 2004, 50(11):3561-3573.doi: 10.1002/art.20611.
doi: 10.1002/art.20611
URL
|
[32] |
Jackson H E, Ono Y, Wang X G, Elworthy S, Cunliffe V T, Ingham P W. The role of Sox6 in zebrafish muscle fiber type specification[J]. Skeletal Muscle, 2015, 5(1):2.doi: 10.1186/s13395-014-0026-2.
doi: 10.1186/s13395-014-0026-2
URL
|
[33] |
Quiat D, Voelker K A, Pei J M, Grishin N V, Grange R W, Bassel-Duby R, Olson E N. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J]. PNAS, 2011, 108(25):10196-10201.doi: 10.1073/pnas.1107413108.
doi: 10.1073/pnas.1107413108
URL
|
[34] |
Okada Y, Kamatani Y, Takahashi A, Matsuda K, Hosono N, Ohmiya H, Daigo Y, Yamamoto K, Kubo M, Nakamura Y, Kamatani N. A genome-wide association study in 19 633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci[J]. Human Molecular Genetics, 2010, 19(11):2303-2312.doi: 10.1093/hmg/ddq091.
doi: 10.1093/hmg/ddq091
URL
|
[35] |
Fan B, Onteru S K, Du Z Q, Garrick D J, Stalder K J, Rothschild M F. Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs[J]. PLoS One, 2011, 6(2):e14726.doi: 10.1371/journal.pone.0014726.
doi: 10.1371/journal.pone.0014726
URL
|
[36] |
doi: 10.1111/j.1748-1716.2010.02130.x.
URL
|
[37] |
England J, Loughna S. Heavy and light roles:Myosin in the morphogenesis of the heart[J]. Cellular and Molecular Life Sciences, 2013, 70(7):1221-1239.doi: 10.1007/s00018-012-1131-1.
doi: 10.1007/s00018-012-1131-1
URL
|
[38] |
李娜. 基于GWAS的猪肉品质性状候选基因研究[D]. 北京: 中国农业大学, 2016.
|
|
Li N. Genome-wide association studies for pig meat traits and exploration of major genes[D]. Beijing: China Agricultural University, 2016.
|
[39] |
Bryant P J, Huwe A. LAP proteins:What's up with epithelia?[J]. Nature Cell Biology, 2000, 2(8):E141-E143.doi: 10.1038/35019616.
doi: 10.1038/35019616
pmid: 10934483
|
[40] |
Zheng X, Ju Z H, Wang J, Li Q L, Huang J M, Zhang A W, Zhong J F, Wang C F. Single nucleotide polymorphisms,haplotypes and combined genotypes of LAP3 gene in bovine and their association with milk production traits[J]. Molecular Biology Reports, 2011, 38(6):4053-4061.doi: 10.1007/s11033-010-0524-1.
doi: 10.1007/s11033-010-0524-1
pmid: 21110109
|
[41] |
Allan M F, Thallman R M, Cushman R A, Echternkamp S E, White S N, Kuehn L A, Casas E, Smith T P L. Association of a single nucleotide polymorphism in SPP1 with growth traits and twinning in a cattle population selected for twinning rate[J]. Journal of Animal Science, 2007, 85(2):341-347.doi: 10.2527/jas.2006-460.
doi: 10.2527/jas.2006-460
pmid: 17040953
|