[1] |
Mårtensson L M D, Barreiro A, Li S J, Jensen E S. Agronomic performance,nitrogen acquisition and water-use efficiency of the perennial grain crop Thinopyrum intermedium in a monoculture and intercropped with alfalfa in Scandinavia[J]. Agronomy for Sustainable Development, 2022, 42(2):21.doi: 10.1007/s13593-022-00752-0.
doi: 10.1007/s13593-022-00752-0
|
[2] |
doi: 10.11869/j.issn.100-8551.2022.05.1008
|
|
Li G Y, Cong X J, Li G Q, Zhao N, Chen E Y, Li L. Effect of sowing date of foxtail millet on crop productivity in foxtail millet/peanut intercropping system[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(5):1008-1016.
|
[3] |
Gao Y, Zhang Y A, Feng C, Chu H L, Feng C, Wang H B, Wu L F, Yin S, Liu C, Chen H H, Li Z M, Zou Z R, Tang L Z. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis[J]. Computational and Structural Biotechnology Journal, 2022, 20:1002-1011.doi: 10.1016/j.csbj.2022.02.009.
doi: 10.1016/j.csbj.2022.02.009
URL
|
[4] |
Behera S S, Ray R C. Konjac glucomannan,a promising polysaccharide of Amorphophallus konjac K.Koch in health care[J]. International Journal of Biological Macromolecules, 2016, 92:942-956.doi: 10.1016/j.ijbiomac.2016.07.098.
doi: 10.1016/j.ijbiomac.2016.07.098
URL
|
[5] |
Choi D, Jang W, Toda H, Yoshikawa M. Differences in characteristics of photosynthesis and nitrogen utilization in leaves of the black locust( Robinia pseudoacacia L.) according to leaf position[J]. Forests, 2021, 12(3):348.doi: 10.3390/f12030348.
doi: 10.3390/f12030348
URL
|
[6] |
doi: 10.3969/j.issn.1001-7461.2022.04.11
|
|
Jin S Y, Peng Z D. Research progress on drought stress on Robinia pseudoacacia and Pinus tabuliformis[J]. Journal of Northwest Forestry University, 2022, 37(4):79-91.
|
[7] |
doi: 10.7606/j.issn.1000-4025.2015.02.0364
|
|
He F, Zhang Z L, Liu L P, Cui M, Xue Q H. Microecological mechanism for healthy growth and higher yield of Amorphophallus konjac under Acacia forest[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2):364-372.
|
[8] |
张忠良, 刘列平, 郑敏. 刺槐林下魔芋抗病栽培技术[J]. 北方园艺, 2012(13):148-150.
|
|
Zhang Z L, Liu L P, Zheng M. Cultivation techniques of Amorphophallus rivieri under Robinia pseudoacacia forest[J]. Northern Horticulture, 2012(13):148-150.
|
[9] |
Zheng C H, Wang R S, Zhou X, Li C N, Dou X Y. Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China[J]. Agricultural Water Management, 2022, 266:107595.doi: 10.1016/j.agwat.2022.107595.
doi: 10.1016/j.agwat.2022.107595
URL
|
[10] |
doi: 10.7606/j.issn.1000-4025.2014.06.1198
|
|
Shan L S, Li Y, Duan Y N, Geng D M, Li Z Y, Zhang R, Duan G F, Васильеви Ж A. Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6):1198-1205.
|
[11] |
doi: 10.27415/d.cnki.gxngc.2021.000649
|
|
Zou Q. Effects of different cultivation measures on the growth and occurence of soil-borne diseases of Amorphophallus konjac in low altitude area[D]. Mianyang: Southwest University of Science and Technology, 2021.
|
[12] |
doi: 10.16409/j.cnki.2095-039x.2019.06.026
|
|
Wang H Y, Yang D L, Guo B L, Zhang Q, Liu H F, Zhang Y J. Green and high-effective disease control and cultivation techniques of Amorphophallus konjac[J]. Chinese Journal of Biological Control, 2019, 35(6):987-991.
|
[13] |
He F. Response of root-associated bacterial communities to different degrees of soft rot damage in Amorphophallus konjac under a Robinia pseudoacacia plantation[J]. Frontiers in Microbiology, 2021, 12:652758.doi: 10.3389/fmicb.2021.652758.
doi: 10.3389/fmicb.2021.652758
URL
|
[14] |
doi: 10.19336/j.cnki.trtb.2005.04.034
|
|
Jia Y B, Yang X E, Liu J X. Morphological and physiological adaptation of plant root to nutrient deficit and elemental toxicity stress[J]. Chinese Journal of Soil Science, 2005, 36(4):610-616.
|
[15] |
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.doi: 10.1038/nbt.1883.
doi: 10.1038/nbt.1883
pmid: 21572440
|
[16] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology:Tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29.doi: 10.1038/75556.
doi: 10.1038/75556
pmid: 10802651
|
[17] |
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(S):D277-D280.doi: 10.1093/nar/gkh063.
doi: 10.1093/nar/gkh063
pmid: 14681412
|
[18] |
Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Qureshi M, Sangrador-Vegas A, Salazar G A, Tate J, Bateman A. The Pfam protein families database:Towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1):D279-D285.doi: 10.1093/nar/gkv1344.
doi: 10.1093/nar/gkv1344
URL
|
[19] |
Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen L J, von Mering C, Bork P. eggNOG v3.0:Orthologous groups covering 1133 organisms at 41 different taxonomic ranges[J]. Nucleic Acids Research, 2012, 40(D1):D284-D289.doi: 10.1093/nar/gkr1060.
doi: 10.1093/nar/gkr1060
URL
|
[20] |
Apweiler R, Bairoch A, Wu C H, Barker W C, Boeckmann B, Ferro S, Gasteiger E, Huang H Z, Lopez R, Magrane M, Martin M J, Natale D A, O'Donovan C, Redaschi N, Yeh L S L. UniProt:The universal protein knowledgebase[J]. Nucleic Acids Research, 2004, 32(S):D115-D119.doi: 10.1093/nar/gkh131.
doi: 10.1093/nar/gkh131
pmid: 14681372
|
[21] |
Li B, Dewey C N. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323.doi: 10.1186/1471-2105-12-323.
doi: 10.1186/1471-2105-12-323
|
[22] |
Wang L K, Feng Z X, Wang X, Wang X W, Zhang X G. DEGseq:An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1):136-138.doi: 10.1093/bioinformatics/btp612.
doi: 10.1093/bioinformatics/btp612
URL
|
[23] |
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36(S1):D480-D484.doi: 10.1093/nar/gkm882.
doi: 10.1093/nar/gkm882
URL
|
[24] |
王凯. 魔芋内参基因筛选及HSFA1基因表达分析[D]. 重庆: 西南大学, 2017.
|
|
Wang K. Selection of reference genes and expression analysis of HSFA1 in Amorphophallus[D]. Chongqing: Southwest University, 2017.
|
[25] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[26] |
Leister D, Wang L S, Kleine T. Organellar gene expression and acclimation of plants to environmental stress[J]. Frontiers in Plant Science, 2017, 8:387.doi: 10.3389/fpls.2017.00387.
doi: 10.3389/fpls.2017.00387
pmid: 28377785
|
[27] |
doi: 10.16213/j.cnki.scjas.2013.03.040
|
|
Liu Y, Guo H C, Zhang Y Q, Li W L. Study on Amorphophallus konjac growth and glucomannan accumulation characteristic in intercropping of maize and konjac[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3):1120-1125.
|
[28] |
doi: 10.13842/j.cnki.issn1671-8151.201804019
|
|
Duan L F, Guo B L, Cai Y G, Qin J F, Chen G A, Liu C P, Wang Z F. Effects of different maize density as interplant crops on the yield and plant morbidity of Amorphophallus konjac[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(12):22-25.
|
[29] |
doi: 10.7668/hbnxb.20191173
|
|
Jiang J L, Li L. Transcriptomics analysis of the mechanism of exogenous H2S regulating cucumber in response to salt stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5):17-25.
|
[30] |
Ye D Y, Qi Y H, Cao S F, Wei B Q, Zhang H S. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus[J]. Journal of Plant Physiology, 2017, 212:115-124.doi: 10.1016/j.jplph.2017.02.002.
doi: 10.1016/j.jplph.2017.02.002
URL
|
[31] |
Wang Q, Fan Y M, Teixeira da Silva J A, Yu X N. Transcriptomics analysis of Paeonia lactiflora Pall.in response to drought stress by high-throughput sequencing[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(4):479-493.doi: 10.1080/14620316.2021.1886000.
doi: 10.1080/14620316.2021.1886000
URL
|
[32] |
卢瑞克. 耐盐黄麻种质资源的鉴定与转录组分析[D]. 北京: 中国农业科学院, 2017.
|
|
Lu R K. Identification and transcriptome analysis of salt-tolerant jute germplasm resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
|