[1] |
doi: 10.13842/j.cnki.issn1671-8151.2017.11.004
|
|
Chen S P, Liu X G, Zhao C P, Chen Z. Influences of low temperature stress on different varieties of tomato growth and physiological and biochemical index[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(11):780-784.
|
[2] |
Kawasaki Y, Yoneda Y. Local temperature control in greenhouse vegetable production[J]. The Horticulture Journal, 2019, 88(3):305-314.doi: 10.2503/hortj.UTD-R004.
doi: 10.2503/hortj.UTD-R004
URL
|
[3] |
doi: 10.1111/j.1469-8137.2008.02682.x
URL
|
[4] |
doi: 10.1146/annurev-arplant-070109-104628
|
[5] |
Rhoads A R, Friedberg F. Sequence motifs for calmodulin recognition[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 1997, 11(5):331-340.doi: 10.1096/fasebj.11.5.9141499.
doi: 10.1096/fasebj.11.5.9141499
URL
|
[6] |
Gómez-Esquivel M L, Guidos-Fogelbach G A, Rojo-Guti rrez M I, Mellado-Abrego J, Bermejo-Guevara M A, Castillo-Narváez G, Velázquez-Sámano G, Velasco-Medina A A, Moya-Almonte M G, Vallejos-Pereira C M, López-Hidalgo M, Godínez-Victoria M, Reyes-López C A. Identification of an allergenic calmodulin from Amaranthus palmeri pollen[J]. Molecular Immunology, 2021, 132:150-156.doi: 10.1016/j.molimm.2021.01.031.
doi: 10.1016/j.molimm.2021.01.031
pmid: 33592570
|
[7] |
doi: 10.3724/SP.J.1005.2013.00875
|
|
Zheng Z Z, Shen J Q, Pan W H, Pan J W. Calcium sensors and their stress signaling pathways in plants[J]. Hereditas, 2013, 35(7):875-884.
|
[8] |
Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases:Hubs in plant stress signaling and development[J]. Plant Physiology, 2013, 163(2):523-530.doi: 10.1104/pp.113.222539.
doi: 10.1104/pp.113.222539
URL
|
[9] |
Yuan P G, Yang T B, Poovaiah B W. Calcium signaling-mediated plant response to cold stress[J]. Int J Mol Sci, 2018, 19(12):E3896.doi: 10.3390/ijms19123896.
doi: 10.3390/ijms19123896
|
[10] |
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1056
|
|
Liu Z S, Liu Y Y, Qin Y J, Bi Q, Wang S S, Zhu J B. Cloning and expression analysis of SikCML7 gene from Saussurea involucrata[J]. Biotechnology Bulletin, 2019, 35(6):48-54.
|
[11] |
Yang S L, Lan S S, Deng F F, Gong M. Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L.[J]. Journal of Plant Growth Regulation, 2016, 35(3):815-826.doi: 10.1007/s00344-016-9584-3.
doi: 10.1007/s00344-016-9584-3
URL
|
[12] |
Zhang T J, Pan L J, Huang Q, Zhu L H, Yang N, Peng C L, Chen L B. Overexpression of calmodulin gene fragment from Antarctic notothenioid fish improves chilling tolerance in Nicotiana benthamiana[J]. Photosynthetica, 2017, 55(4):630-637.doi: 10.1007/s11099-016-0682-z.
doi: 10.1007/s11099-016-0682-z
URL
|
[13] |
Tang M F, Xu C, Cao H H, Shi Y, Chen J, Chai Y, Li Z G. Tomato calmodulin-like protein SlCML37 is a calcium(Ca 2+)sensor that interacts with proteasome maturation factor SlUMP1 and plays a role in tomato fruit chilling stress tolerance[J]. Journal of Plant Physiology, 2021, 258/259:153373.doi: 10.1016/j.jplph.2021.153373.
doi: 10.1016/j.jplph.2021.153373
URL
|
[14] |
Munir S, Liu H, Xing Y L, Hussain S, Ouyang B, Zhang Y Y, Li H X, Ye Z B. Overexpression of calmodulin-like(ShCML44)stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses[J]. Scientific Reports, 2016, 6:31772.doi: 10.1038/srep31772.
doi: 10.1038/srep31772
|
[15] |
Zhao Y, Liu W, Xu Y P, Cao J Y, Braam J, Cai X Z. Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species[J]. BMC Plant Biology, 2013, 13(1):70.doi: 10.1186/1471-2229-13-70.
doi: 10.1186/1471-2229-13-70
|
[16] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[17] |
Dürvanger Z, Harmat V. Structural diversity in calmodulin-peptide interactions[J]. Current Protein & Peptide Science, 2019, 20(11):1102-1111.doi: 10.2174/1389203720666190925101937.
doi: 10.2174/1389203720666190925101937
|
[18] |
Chauhan J, Singhal R K, Chaudhary S, Sodan R. Calmodulin in plant responses to abiotic stresses and signalling[J]. International Journal of Pure & Applied Bioscience, 2017, 5(6):1122-1131.doi: 10.18782/2320-7051.5235.
doi: 10.18782/2320-7051.5235
|
[19] |
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress[J]. Plant Cell Reports, 2013, 32(7):985-1006.doi: 10.1007/s00299-013-1414-5.
doi: 10.1007/s00299-013-1414-5
pmid: 23508256
|
[20] |
Boudsocq M, Sheen J. Abiotic Stress Adaptation in Plants[M]. Dordrecht: Springer International Publishing, 2009:75-90.doi: 10.1007/978-90-481-3112-9_4.
doi: 10.1007/978-90-481-3112-9_4
|
[21] |
Sharma D, Kumar A. Calcium signaling network in abiotic stress tolerance in plants[M]. Cambridge,MA:Academic Press, An imprint of Elsevier, 2021:297-314.doi: 10.1016/B978-0-12-821792-4.00003-5.
doi: 10.1016/B978-0-12-821792-4.00003-5
|
[22] |
Mao K, Yang J, Wang M, Liu H Y, Guo X, Zhao S, Dong Q L, Ma F W. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters[J]. BMC Plant Biology, 2021, 21(1):81.doi: 10.1186/s12870-021-02866-1.
doi: 10.1186/s12870-021-02866-1
pmid: 33557757
|
[23] |
Sun D Y. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions[J]. Chinese Science Bulletin, 2000, 45(19):1729-1734.doi: 10.1007/BF02886255.
doi: 10.1007/BF02886255
URL
|
[24] |
doi: 10.3321/j.issn:1671-3877.2004.05.001
|
|
Mao G H, Song L X, Sun D Y. Progress of study on calmodulin-binding proteins in plants[J]. Acta Photophysiologica Sinica, 2004, 30(5):481-488.
|
[25] |
doi: 10.11869/j.issn.100-8551.2018.03.0600
|
|
Zhang Z W, Suo L G, Wu P, Liu H Y, Cui J X. Ca2+ involved in antioxidant enzymes activities of cucumber seedling leaves enhanced by exogenous nitric oxide under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(3):600-608.
|
[26] |
doi: 10.13207/j.cnki.jnwafu.2019.10.018
|
|
Wu J C, Lin S K, Lin S Y, Wu B S, Wang Y Y, Hong Y H. Ca2+ involved signal transduction in enhancing frost resistance of loquat seedlings induced by exogenous NO[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(10):146-154.
|
[27] |
doi: 10.13430/j.cnki.jpgr.2015.06.025
|
|
Xue M, Wang X F, Wang Z L, Li L G, Zhao H B, Wang M Y. Cloning and preliminary functional analysis of AmCaM1 from Ammopiptanthus mongolicus[J]. Journal of Plant Genetic Resources, 2015, 16(6):1315-1320.
|
[28] |
doi: 10.13430/j.cnki.jpgr.2016.05.017
|
|
Huang Y T, Qian W J, Wang Y C, Cao H L, Wang L, Hao X Y, Wang X C, Yang Y J. Molecular cloning and expression of CaM family gene CsCaMs under cold stress in tea plant[Camellia sinensis (L.) O.Kuntze[J]. Journal of Plant Genetic Resources, 2016, 17(5):906-912.
|
[29] |
doi: 10.14067/j.cnki.1673-923x.2018.05.012
|
|
Wang B M, Tan X F, Hu X Y, Shi M W, Mo H. Cloning and expression analysis of calmodulin cDNA genes from Camellia oleifera[J]. Journal of Central South University of Forestry & Technology, 2018, 38(5):70-78.
|
[30] |
doi: 10.13320/j.cnki.jauh.2016.0034
|
|
Cheng Y D, Ge W Y, Yan H B, Yang K, Guan J F. Cloning and expression analysis of calmodulin gene from Yali pears[J]. Journal of Agricultural University of Hebei, 2016, 39(2):58-63.
|
[31] |
秦宗志, 刘鲡, 舒茂荣, 陈杨晗, 蒋芩, 周莉君, 刘静, 廖进秋. 百脉根钙调素蛋白(LjCaM3)基因的克隆及表达分析[J]. 分子植物育种, 2018, 16(2):415-422.doi: 10.13271/j.mpb.016.000415.
doi: 10.13271/j.mpb.016.000415
|
|
Qin Z Z, Liu L, Shu M R, Chen Y H, Jiang Q, Zhou L J, Liu J, Liao J Q. Cloning and expression analysis of calmodulin(LjCaM3)gene in Lotus japonicus[J]. Molecular Plant Breeding, 2018, 16(2):415-422.
|