[1] |
王奎玲. 耐冬山茶种质资源研究[D]. 北京: 北京林业大学, 2006.
|
|
Wang K L. Studies on the germplasm resources of Naidong Shancha(Camellia japonica L.)[D]. Beijing: Beijing Forestry University, 2006.
|
[2] |
|
|
Zhang W C. Study on adaptability and specific scheme of winter-resistant camellia in Beijing[J]. Contemporary Horticulture, 2019(16):122-123.
|
[3] |
|
|
Liu C J, Guo X, Wang K L, Liu Q C, Sun Y K, Jiang X Q, Liu Q H. Ecophysiological responses of Camellia japonica(Naidong)to different light and water conditions[J]. Chinese Journal of Applied Ecology, 2018, 29(4):1125-1132.
|
[4] |
Wang H T, Xu F F. Identification and expression analysis of the GLK gene family in tea plant( Camellia sinensis)and a functional study of CsGLK54 under low-temperature stress[J]. Scientific Reports, 2024, 14(1):12465.doi: 10.1038/s41598-024-63323-1.
|
[5] |
Chen B C, Wu X J, Dong Q J, Xiao J P. Screening and functional analysis of StMYB transcription factors in pigmented potato under low-temperature treatment[J]. BMC Genomics, 2024, 25(1):283.doi: 10.1186/s12864-024-10059-x.
|
[6] |
Deryabin A, Zhukova K, Naraikina N, Venzhik Y. Effect of low temperature on content of primary metabolites in two wheat genotypes differing in cold tolerance[J]. Metabolites, 2024, 14(4):199.doi: 10.3390/metabo14040199.
|
[7] |
Nokhsorov V V, Protopopov F F, Sleptsov I V, Petrova L V, Petrov K A. Metabolomic profile and functional state of oat plants( Avena sativa L.) sown under low-temperature conditions in the cryolithozone[J]. Plants, 2024, 13(8):1076.doi: 10.3390/plants13081076.
|
[8] |
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11632-11637.doi: 10.1073/pnas.190309197.
pmid: 11005831
|
[9] |
Singh K, Singh S P, Yadav M K. Physio-biochemical assessment and CBF genes expression analysis in wheat under dehydration condition[J]. Biologia, 2022, 77(7):1851-1860.doi: 10.1007/s11756-022-01028-4.
|
[10] |
Lee B H, Henderson D A, Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. The Plant Cell, 2005, 17(11):3155-3175.doi: 10.1105/tpc.105.035568.
|
[11] |
Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17(8):1043-1054.doi: 10.1101/gad.1077503.
|
[12] |
Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:571-599.doi: 10.1146/annurev.arplant.50.1.571.
pmid: 15012220
|
[13] |
Shi Y H, Huang J Y, Sun T S, Wang X F, Zhu C Q, Ai Y X, Gu H Y. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2017, 59(2):118-133.doi: 10.1111/jipb.12515.
|
[14] |
Shi Y T, Ding Y L, Yang S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7):623-637.doi: 10.1016/j.tplants.2018.04.002.
pmid: 29735429
|
[15] |
Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4):544-564.doi: 10.1016/j.molp.2020.02.004.
pmid: 32068158
|
[16] |
Fan M L, Yang K, Zhou R, Liu Q H, Guo X, Sun Y K. Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica(Naidong)[J]. Plant Physiology and Biochemistry, 2021, 167:795-805.doi: 10.1016/j.plaphy.2021.09.006.
|
[17] |
|
|
Shen Z, Cao Q H. Research progress on application of yeast two hybrid system and Y2H-derivated techniques[J]. Journal of Agricultural Biotechnology, 2022, 30(12):2425-2433.
|
[18] |
|
|
Cai X, Li X H, Wang H T, Liu C J, Tang L Y, Zhang S J, Zhang J H. Construction of yeast two-hybrid library of cotton under abiotic stress and screening of GhJAZ1 interacting proteins in cotton[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(11):2158-2165.
doi: 10.11869/j.issn.1000-8551.2023.11.2158
|
[19] |
|
|
Ren Y J, Zhang L G, Zhao M L, Li J, Shao D K. cDNA yeast library construction of Chinese cabbage seeds and screening and analysis of BrTTG1 interacting proteins[J]. Biotechnology Bulletin, 2024, 40(2):223-232.
|
[20] |
|
|
Wang Q Y, Duan P L, Li H X, Liu N, Cao Z Y, Dong J G. Construction of cDNA library of Setosphaeria turcica and screening of transcription factor StMR1 interacting proteins[J]. Biotechnology Bulletin, 2024, 40(6): 281-289.
|
[21] |
|
|
Xu J, Yao X F, Lou L N, Zhu L L, Zhang M, Yang X P, Xu J H. Construction of yeast two-hybrid library for parthenocarpy fruit of cucumber and screening of CsCML25 interacting protein[J]. Seed Science & Technology, 2024, 42(7):1-4.
|
[22] |
|
|
Zou X W, Yue J N, Li Z Y, Dai L Y, Li W. Functional analysis of rice heat shock transcription factor HsfA2b regulating the resistance to abiotic stresses[J]. Biotechnology Bulletin, 2024, 40(2):90-98.
|
[23] |
Rani R, Khan M A, Kayani W K, Ullah S, Naeem I, Mirza B. Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall.ex.Benth[J]. Acta Physiologiae Plantarum, 2017, 39(4):97.doi: 10.1007/s11738-017-2394-9.
|
[24] |
Upadhyaya H. Changes in antioxidative responses to low temperature in tea [ Camellia sinensis(L.) O.Kuntze]cultivars[J]. International Journal of Modern Botany, 2012, 2(4):83-87.doi: 10.13140/2.1.3501.1205.
|
[25] |
Wallaart T E, Pras N, Beekman A C, Quax W J. Seasonal variation of Artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin:proof for the existence of chemotypes[J]. Planta Medica, 2000, 66(1):57-62.doi: 10.1055/s-2000-11115.
pmid: 10705736
|
[26] |
|
|
Yuan X Y, Xu S P, Wang M F, Lei Z H, Cui B. Cloning of PhTSJT1 gene from Phalaenopsis and its expression under low temperature stress[J]. Genomics and Applied Biology, 2019, 38(2):707-713.
|
[27] |
|
|
Yao M M. Transcription factor CaWRKY32/CaWRKY20 synergistically regulates the molecular mechanism of chilling injury of postharvest green pepper mediated by key antioxidant gene CaAPX1[D]. Shenyang: Shenyang Agricultural University, 2023.
|
[28] |
Li D N, Gu B X, Huang C X, Shen J Y, Wang X, Guo J N, Yu R Q, Mou S R, Guan Q J. Functional study of Amorpha fruticosa WRKY20 gene in response to drought stress[J]. International Journal of Molecular Sciences, 2023, 24(15):12231.doi: 10.3390/ijms241512231.
|
[29] |
|
|
Yusufu S. Study on the mechanism of RAV2 gene that regulates high photosynthetic efficiency in plants[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023.
|
[30] |
Li J L, Song C Y, Li H M, Wang S Q, Hu L Y, Yin Y L, Wang Z H, He W X. Comprehensive analysis of cucumber RAV family genes and functional characterization of CsRAV1 in salt and ABA tolerance in cucumber[J]. Frontiers in Plant Science, 2023, 14:1115874.doi: 10.3389/fpls.2023.1115874.
|
[31] |
|
|
Chen L B, Li Y Y, Wang Q, Gao Y L, Jiang C J. Cloning and expression analysis of RAV gene related to cold stress from tea plant[Camellia sinensis(L.) O.Kuntz[J]. Plant Physiology Communications, 2010, 46(4):354-358.
|
[32] |
|
|
Li Z X, Chen X B. Research advances on plant inducible promoters and related cis-acting elements[J]. Biotechnology Bulletin, 2015, 31(10):8-15.
|
[33] |
|
|
Wang T, Sun H, Ren Z H, Li Q. Identification and bioinformatic analysis of RAV gene family in tomato[J]. Molecular Plant Breeding, 2023, 21(6):1793-1800.
|
[34] |
|
|
Wu Z Q, Qi X W, Fang H L, Yu X, Li L, Bai Y, Liu Q, Liang C Y. Gene cloning of TmRAV1 in Taraxacum mongolicum and analysis on its expression in response to abscisic acid signaling[J]. Journal of Plant Resources and Environment, 2024, 33(1):47-58.
|