[1] Li J J, Liang X Z, Wang X L, Shi Y, Gu Q S, Kuo Y W, Falk B W, Yan F M. Direct evidence for the semipersistent transmission of Cucurbit chlorotic yellows virus by a whitefly vector[J]. Scientific Reports, 2016, 6:36604.doi:10.1038/srep36604. [2] Okuda M, Okazaki S, Yamasaki S, Okuda S, Sugiyama M. Host range and complete genome sequence of Cucurbit chlorotic yellows virus, a new member of the genus Crinivirus[J]. Phytopathology, 2010, 100(6):560-566.doi:10.1094/PHYTO-100-6-0560. [3] Gu Q S, Liu Y H, Wang Y H, Huangfu W G, Gu H F, Xu L, Song F M, Brown J K. First report of Cucurbit chlorotic yellows virus in cucumber, melon, and watermelon in China[J]. Plant Disease, 2011, 95(1):73.doi:10.1094/PDIS-07-10-0550. [4] Huang L H, Tseng H H, Li J T, Chen T C. First report of cucurbit chlorotic yellows virus infecting cucurbits in Taiwan[J]. Plant Disease, 2010, 94(9):1168.doi:10.1094/PDIS-94-9-1168B. [5] 刘珊珊. 甜瓜褪绿黄化病病原的分子多样性分析及发生规律研究[D].北京:中国农业科学院, 2013. Liu S S. The molecular diversities analysis of melon chlorotic yellows pathogen and investigation of the disease occurrence rule[D].Beijing:Chinese Academy of Agricultural Sciences, 2013. [6] 柳洋. 中国烟粉虱生物型分布、带毒率及抗药性监测[D].北京:中国农业科学院, 2015. Liu Y. Biotype, the ratio of vector-borne diseases and insecticide resistance status of Bemisia tabaci populations in China[D].Beijing:Chinese Academy of Agricultural Sciences, 2015. [7] 彭斌, 刘莉铭, 刘珊珊, 张以和, 吉艳玲, 吴洋, 张学军, 古勤生. 瓜类褪绿黄化病毒新疆分离物基因组分析[J]. 植物病理学报, 2017, 47(6):730-737.doi:10.13926/j.cnki.apps.000117. Peng B, Liu L M, Liu S S, Zhang Y H, Ji Y L, Wu Y, Zhang X J, Gu Q S. The genome of Cucurbit chlorotic yellows virus from Xinjiang autonomous region of China[J]. Acta Phytopathologica Sinica, 2017, 47(6):730-737. [8] 唐鑫, 张德咏, 李凡, 燕飞, 周序国, 张友军, 史晓斌, 刘勇. 瓜类褪绿黄化病毒(Cucurbit chlorotic yellows virus) 在湖南省的首次报道及其流行动态研究[J]. 植物病理学报, 2017, 47(4):573-576.doi:10.13926/j.cnki.apps.000065. Tang X, Zhang D Y, Li F, Yan F, Zhou X G, Zhang Y J, Shi X B, Liu Y. The first report and the epidemical dynamic of the Cucurbit chlorotic yellows virus(CCYV) in Hunan Province[J]. Acta Phytopathologica Sinica, 2017, 47(4):573-576. [9] Chen S Y, Sun X Y, Shi Y J, Wei Y, Han X Y, Li H L, Chen L L, Sun B J, Sun H J, Shi Y. Cucurbit chlorotic yellows virus p22 protein interacts with cucumber SKP1LB1 and its F-Box-Like motif is crucial for silencing suppressor activity[J]. Viruses, 2019, 11(9):818.doi:10.3390/v11090818. [10] Kreuze J F, Klein I S, Lazaro M U, Chuquiyuri W J C, Morgan G L, Mejía P G C, Ghislain M, Valkonen J P T. RNA silencing-mediated resistance to a crinivirus(Closteroviridae) in cultivated sweetpotato(Ipomoea batatas L.) and development of sweetpotato virus disease following co-infection with a potyvirus[J]. Molecular Plant Pathology, 2008, 9(5):589-598.doi:10.1111/j.1364-3703.2008.00480.x. [11] Kreuze J F, Savenkov E I, Cuellar W, Li X D, Valkonen J P T. Viral class 1 RNase Ⅲ involved in suppression of RNA silencing[J]. Journal of Virology, 2005, 79(11):7227-7238.doi:10.1128/JVI.79.11.7227-7238.2005. [12] Cañizares M C, Navas-Castill, Moriones E. Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus[J]. Virology, 2008, 379(1):168-174.doi:10.1016/j.virol.2008.06.020. [13] Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares M C. The p22 RNA silencing suppressor of the Crinivirus tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage[J]. Virology, 2016, 488:129-136.doi:10.1016/j.virol.2015.11.008. [14] Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares M C. The p22 RNA silencing suppressor of the Crinivirus tomato chlorosis virus is dispensable for local viral replication but important for counteracting an antiviral RDR6-mediated response during systemic infection[J]. Viruses, 2016, 8(7):182.doi:10.3390/v8070182. [15] 吴凯朝, 黄诚梅, 李杨瑞, 杨丽涛, 吴建明. TRIzol试剂法快速高效提取3种作物不同组织总RNA[J]. 南方农业学报, 2012, 43(12):1934-1939.doi:10.3969/j:issn.2095-1191.2012.12.1934. Wu K C, Huang C M, Li Y R, Yang L T, Wu J M. Fast and effective total RNA extraction from different tissues in 3 crops through the TRIzol reagent method[J]. Guangxi Agricultural Sciences, 2012, 43(12):1934-1939. [16] Sun X Y, Wang Z Y, Gu Q S, Li H L, Han W L, Shi Y. Transcriptome analysis of Cucumis sativus infected by Cucurbit chlorotic yellows virus[J]. Virology Journal, 2017, 14(1):18.doi:10.1186/s12985-017-0690-z. [17] Han S J, Wang Y, Zheng X Y, Jia Q, Zhao J P, Bai F, Hong Y G, Liu Y L. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana[J]. The Plant Cell, 2015, 27(4):1316-1331.doi:10.1105/tpc.114.134692. [18] Muñoz-Bertomeu J, Cascales-Miñana B, Irles-Segura A, Mateu I, Nunes-Nesi A, Fernie A R, Segura J, Ros R. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis[J]. Plant Physiology, 2010, 152(4):1830-1841.doi:10.1104/pp.109.150458. [19] Munñoz-Bertomeu J, Cascales-Minñana B, Mulet J M, Baroja-Fernaández E, Pozueta-Romero J, Kuhn J M, Segura J, Ros R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis[J]. Plant Physiology, 2009, 151(2):541-558.doi:10.1104/pp.109.143701. [20] Chaturvedi S, Seo J K, Rao A L N. Functionality of host proteins in Cucumber mosaic virus replication:GAPDH is obligatory to promote interaction between replication-associated proteins[J]. Virology, 2016, 494:47-55.doi:10.1016/j.virol.2016.04.001. [21] Kim S C, Guo L, Wang X M. Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress[J]. Nature Communications, 2020, 11(1):3439.doi:10.1038/s41467-020-17311-4. [22] Marri L, Zaffagnini M, Collin V, Issakidis-Bourguet E, Lemaire S D, Pupillo P, Sparla F, Miginiac-Maslow M, Trost P. Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex[J]. Molecular Plant, 2009, 2(2):259-269.doi:10.1093/mp/ssn061. [23] Muñoz-Bertomeu J, Bermúdez M A, Segura J, Ros R. Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid(ABA) signal transduction:Interaction between ABA and primary metabolism[J]. Journal of Experimental Botany, 2011, 62(3):1229-1239.doi:10.1093/jxb/erq353. [24] Yang X, Das P P, Oppenheimer P, Zhou G H, Wong S M. iTRAQ-based protein analysis provides insight into heterologous superinfection exclusion with TMV-43A against CMV in tobacco(Nicotiana benthamiana) plants[J]. Journal of Proteomics, 2020, 229:103948.doi:10.1016/j.jprot.2020.103948. [25] Wang R Y L, Nagy P D. Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis[J]. Cell Host & Microbe, 2008, 3(3):178-187.doi:10.1016/j.chom.2008.02.005. [26] Ruiz-Ruiz S, Span R, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23[J]. Plant Molecular Biology, 2018, 98(4/5):363-373.doi:10.1007/s11103-018-0783-0. [27] Ismayil A, Yang M, Haxim Y, Wang Y J, Li J L, Han L, Wang Y, Zheng X Y, Wei X, Nagalakshmi U, Hong Y G, Hanley-Bowdoin L H, Liu Y L. Cotton leaf curl multan virus β-C1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases[J]. The Plant Cell, 2020, 32(4):1124-1135.doi:10.1105/tpc.19.00759. [28] Guo L, Devaiah S P, Narasimhan R, Pan X Q, Zhang Y Y, Zhang W H, Wang X M. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase DΔ to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. The Plant Cell, 2012, 24(5):2200-2212.doi:10.1105/tpc.111.094946. [29] Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez M E, Francia F, Danon A, Marchand C H, Fermani S, Trost P, Lemaire S D. Redox regulation of the Calvin-Benson cycle:Something old, something new[J]. Frontiers in Plant Science, 2013, 4:470.doi:10.3389/fpls.2013.00470. [30] Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, Taniguchi H, Mise K, Okuno T. GAPDH-a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement[J]. PLoS Pathogens, 2014, 10(11):e1004505.doi:10.1371/journal.ppat.1004505. |