[1] |
Fradin E F, Thomma B P H J. Physiology and molecular aspects of Verticillium wilt diseases caused by V.dahliae and V.albo-atrum[J]. Molecular Plant Pathology, 2006, 7(2):71-86.doi: 10.1111/j.1364-3703.2006.00323.x.
|
[2] |
Song R R, Li J P, Xie C J, Jian W, Yang X Y. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae[J]. International Journal of Molecular Sciences, 2020, 21(3):1120.doi: 10.3390/ijms21031120.
|
[3] |
|
|
Jian G L, Zou Y F, Ma C. Causes and countermeasures of cotton Verticillium wilt epidemic in successive years[J]. China Cotton, 2003, 30(3):13-14.
|
[4] |
Cai Y F, He X H, Mo J, Sun Q, Yang J P, Liu J G. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton:a review[J]. African Journal of Biotechnology, 2009, 8(25):7363-7372.doi: 10.5897/AJB2009.000-9571.
|
[5] |
Xu J, Xu X Y, Tian L L, Wang G L, Zhang X Y, Wang X Y, Guo W Z. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton[J]. Scientific Reports, 2016, 6:29022.doi: 10.1038/srep29022.
|
[6] |
Zhu Y T, Hu X Q, Wang P, Gao L Y, Pei Y K, Ge Z Y, Ge X Y, Li F G, Hou Y X. GhPLP2 positively regulates cotton resistance to Verticillium wilt by modulating fatty acid accumulation and jasmonic acid signaling pathway[J]. Frontiers in Plant Science, 2021, 12:749630.doi: 10.3389/fpls.2021.749630.
|
[7] |
Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu L Q, Wu J H, Zhang G Y, Ma Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants[J]. Molecular Plant Pathology, 2019, 20(3):309-322.doi: 10.1111/mpp.12755.
pmid: 30267563
|
[8] |
Yang J, Zhang Y, Wang X F, Wang W Q, Li Z K, Wu J H, Wang G N, Wu L Q, Zhang G Y, Ma Z Y. HyPRP1 performs a role in negatively regulating cotton resistance to V.dahliae via the thickening of cell walls and ROS accumulation[J]. BMC Plant Biology, 2018, 18(1):339.doi: 10.1186/s12870-018-1565-1.
|
[9] |
Mo H J, Wang X F, Zhang Y, Zhang G Y, Zhang J F, Ma Z Y. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae[J]. The Plant Journal, 2015, 83(6):962-975.doi: 10.1111/tpj.12941.
|
[10] |
Zhang Y, Wang X F, Rong W, Yang J, Li Z K, Wu L Q, Zhang G Y, Ma Z Y. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G.hirsutum are associated with resistance to Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2017, 30(12):984-996.doi: 10.1094/MPMI-03-17-0067-R.
pmid: 28850286
|
[11] |
Shaban M, Khan A H, Noor E, Malik W, Ali H M W, Shehzad M, Akram U, Qayyum A. A 13-Lipoxygenase,GhLOX2,positively regulates cotton tolerance against Verticillium dahliae through JA-mediated pathway[J]. Gene, 2021, 796/797:145797.doi: 10.1016/j.gene.2021.145797.
|
[12] |
Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis[J]. Plant Physiology, 2018, 176(2):1808-1823.doi: 10.1104/pp.17.01628.
pmid: 29229698
|
[13] |
Rydén L G, Hunt L T. Evolution of protein complexity:the blue copper-containing oxidases and related proteins[J]. Journal of Molecular Evolution, 1993, 36(1):41-66.doi: 10.1007/BF02407305.
pmid: 8433378
|
[14] |
Khan J A, Wang Q, Sjölund R D, Schulz A, Thompson G A. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis[J]. Plant Physiology, 2007, 143(4):1576-1589.doi: 10.1104/pp.106.092296.
|
[15] |
Mashiguchi K, Asami T, Suzuki Y. Genome-wide identification,structure and expression studies,and mutant collection of 22 early nodulin-like protein genes in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(11):2452-2459.doi: 10.1271/bbb.90407.
|
[16] |
Ma H L, Zhao H M, Liu Z, Zhao J. The phytocyanin gene family in rice( Oryza sativa L.):genome-wide identification,classification and transcriptional analysis[J]. PLoS One, 2011, 6(10):e25184.doi: 10.1371/journal.pone.0025184.
|
[17] |
Cao J, Li X, Lu Y Q, Ding L N. Comparative analysis of the phytocyanin gene family in 10 plant species:a focus on Zea mays[J]. Frontiers in Plant Science, 2015, 6:515.doi: 10.3389/fpls.2015.00515.
|
[18] |
Luo S S, Hu W F, Wang Y, Liu B, Yan H W, Xiang Y. Genome-wide identification,classification,and expression of phytocyanins in Populus trichocarpa[J]. Planta, 2018, 247(5):1133-1148.doi: 10.1007/s00425-018-2849-2.
|
[19] |
Zhang M, Wang X F, Yang J, Wang Z C, Chen B, Zhang X Y, Zhang D M, Sun Z W, Wu J H, Ke H F, Wu L Q, Zhang G Y, Zhang Y, Ma Z Y. GhENODL6 isoforms from the phytocyanin gene family regulated Verticillium wilt resistance in cotton[J]. International Journal of Molecular Sciences, 2022, 23(6):2913.doi: 10.3390/ijms23062913.
|
[20] |
Benschop J J, Mohammed S, O'Flaherty M, Heck A J R, Slijper M, Menke F L H. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis[J]. Molecular & Cellular Proteomics, 2007, 6(7):1198-1214.doi: 10.1074/mcp.M600429-MCP200.
|
[21] |
Yan P, Zeng Y J, Shen W T, Tuo D C, Li X Y, Zhou P. Nimble cloning:a simple,versatile,and efficient system for standardized molecular cloning[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7:460.doi: 10.3389/fbioe.2019.00460.
|
[22] |
Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, Gu Q S, Wang Z C, Wang G N, Yang J, Wu J H, Yan Y Y, Meng C S, Li L H, Li X X, Mo S J, Wu N, Ma L M, Chen L T, Zhang M, Si A J, Yang Z W, Wang N, Wu L Z, Zhang D M, Cui Y R, Cui J, Lü X, Li Y, Shi R K, Duan Y H, Tian S L, Wang X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement[J]. Nature Genetics, 2021, 53(9):1385-1391.doi: 10.1038/s41588-021-00910-2.
pmid: 34373642
|
[23] |
Xiong E H, Cao D, Qu C X, Zhao P F, Wu Z K, Yin D M, Zhao Q Z, Gong F P. Multilocation proteins in organelle communication:based on protein-protein interactions[J]. Plant Direct, 2022, 6(2):e386.doi: 10.1002/pld3.386.
|
[24] |
陆承哲, 贾培, 武盼, 唐叶, 石琳芳, 陈爱民, 彭清忠, 吴家和. 陆地棉SKS基因家族全基因组特征分析与 GhSKS13抗黄萎病功能解析[J]. 华北农学报, 2023, 38(6):156-167. doi: 10.7668/hbnxb.20194046.
|
|
Lu C Z, Jia P, Wu P, Tang Y, Shi L F, Chen A M, Peng Q Z, Wu J H. Genome-wide characterization of SKS gene family in Gossypium hirsutum and functional analysis of GhSKS13 in plant resistance to Verticillium wilt[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(6):156-167.
|
[25] |
Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid,a powerful tool for systems biology[J]. International Journal of Molecular Sciences, 2009, 10(6):2763-2788.doi: 10.3390/ijms10062763.
pmid: 19582228
|
[26] |
Hou Y N, Guo X Y, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q P, Luo Y, Gu H Y, Dresselhaus T, Dong J, Qu L J. Maternal ENODLs are required for pollen tube reception in Arabidopsis[J]. Current Biology, 2016, 26(17):2343-2350.doi: 10.1016/j.cub.2016.06.053.
|
[27] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258.doi: 10.1016/j.tplants.2010.02.006.
pmid: 20304701
|
[28] |
Guo R Y, Yu F F, Gao Z, An H L, Cao X C, Guo X Q. GhWRKY3,a novel cotton( Gossypium hirsutum L.)WRKY gene,is involved in diverse stress responses[J]. Molecular Biology Reports, 2011, 38(1):49-58.doi: 10.1007/s11033-010-0076-4.
|
[29] |
Li C, He X, Luo X Y, Xu L, Liu L L, Min L, Jin L, Zhu L F, Zhang X L. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression[J]. Plant Physiology, 2014, 166(4):2179-2194.doi: 10.1104/pp.114.246694.
|
[30] |
Ji Y R, Mou M H, Zhang H M, Wang R L, Wu S G, Jing Y F, Zhang H Y, Li L X, Li Z F, Chen L G. GhWRKY33 negatively regulates jasmonate-mediated plant defense to Verticillium dahliae[J]. Plant Diversity, 2022, 45(3):337-346.doi: 10.1016/j.pld.2022.04.001.
|
[31] |
Xiao S H, Ming Y Q, Hu Q, Ye Z X, Si H, Liu S M, Zhang X J, Wang W R, Yu Y, Kong J, Klosterman S J, Lindsey K, Zhang X L, Aierxi A, Zhu L F. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism[J]. Plant Biotechnology Journal, 2023, 21(5):961-978.doi: 10.1111/pbi.14008.
|
[32] |
Li Y Z, Chen H H, Wang Y W, Zhu J C, Zhang X L, Sun J, Liu F, Zhao Y Y. Function analysis of GhWRKY53 regulating cotton resistance to Verticillium wilt by JA and SA signaling pathways[J]. Frontiers in Plant Science, 2023, 14:1203695.doi: 10.3389/fpls.2023.1203695.
|
[33] |
Zhang S L, Dong L J, Zhang X, Fu X H, Zhao L, Wu L Z, Wang X F, Liu J F. The transcription factor GhWRKY70 from Gossypium hirsutum enhances resistance to Verticillium wilt via the jasmonic acid pathway[J]. BMC Plant Biology, 2023, 23(1):141.doi: 10.1186/s12870-023-04141-x.
|