[1] |
|
|
Wei X S, Cao B H, Lei J J, Chen G J, Chen Q H. Research progress on disease resistance breeding of eggplant[J]. China Vegetables, 2010(10):1-8.
|
[2] |
刘晶晶. 茄子黄萎病病原菌分化、检测及生物防治的研究[D]. 杭州: 浙江大学, 2019.
|
|
Liu J J. Differentiation,detection and biological control of eggplant Verticillium wilt pathogen[D]. Hangzhou: Zhejiang University, 2019.
|
[3] |
贲海燕, 曲红云, 霍建飞, 姚玉荣, 高苇, 郝永娟, 王万立, 张雪岩, 胡建坤, 黄瑞荣. 茄子黄萎病苗期抗性鉴定技术的优化及抗源筛选[J]. 江西农业大学学报, 2022, 44(1):62-73.doi: 10.13836/j.jjau.2022008.
|
|
Ben H Y, Qu H Y, Huo J F, Yao Y R, Gao W, Hao Y J, Wang W L, Zhang X Y, Hu J K, Huang R R. Research on inoculative method of eggplant Verticillium wilt and evaluation of resistance source at seedling stage[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1):62-73.
|
[4] |
|
|
Wang B N, Wang S C, Tan B B, Qiu D W, Yang X F. Systemic acquired resistance to Tobacco mosaic virus(TMV) induced by protein elicitor from Verticillium dahliae(PevD1) and its mechasnisms in tobacco[J]. Journal of Agricultural Biotechnology, 2012, 20(2):188-195.
|
[5] |
|
|
Zhao M M, Liu Z P, Hu J. The effects of Vertillium dahliae toxin on some enzyme activities of eggplant[J]. Acta Agriculturae Boreali-Sinica, 2003, 18(2):70-73.
|
[6] |
Hahlbrock K, Scheel D, Logemann E, N rnberger T, Parniske M, Reinold S, Sacks W R, Schmelzer E. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10):4150-4157.doi: 10.1073/pnas.92.10.4150.
pmid: 7753777
|
[7] |
庞叶洲. 大丽轮枝菌侵染对茄子幼苗生理特性及基因表达的影响[D]. 杭州: 浙江大学, 2019.
|
|
Pang Y Z. Effects of Verticillium dahliae infection on physiological characteristics and gene expression of eggplant seedlings[D]. Hangzhou: Zhejiang University, 2019.
|
[8] |
|
|
Liu X R. Study on the function of miRm0002 in eggplant defense response to Verticillium wilt[D]. Nanjing: Nanjing Agricultural University, 2017.
|
[9] |
林元秘, 朱文姣, 陈敏, 薛春梅, 晋芳宇, 朱羽平, 蒋欣玥, 叶凌峰, 倪姝南伶, 杨清. miR396b负调控茄子对黄萎病的防御反应[J]. 园艺学报, 2022, 49(8):1713-1722.doi: 10.16420/j.issn.0513-353x.2021-0569.
|
|
Lin Y M, Zhu W J, Chen M, Xue C M, Jin F Y, Zhu Y P, Jiang X Y, Ye L F, Ni S, Yang Q. Mir396b negatively regulates eggplant defense response to Verticillium wilt[J]. Acta Horticulturae Sinica, 2022, 49(8):1713-1722.
|
[10] |
Zhou H, Wang Y, Zhang Y H, Xie Y J, Nadeem H, Tang C M. Flagellin C decreases the expression of the Gossypium hirsutum cation/proton exchanger 3 gene to promote calcium ion,hydrogen peroxide,and nitric oxide and synergistically regulate the resistance of cotton to Verticillium wilt[J]. Frontiers in Plant Science, 2022, 13:969506.doi: 10.3389/fpls.2022.969506.
URL
|
[11] |
|
|
Li X. Cloning and functional analysis of StWRKY-1 gene related to Verticillium wilt resistance in Solanum lyratum L.[D]. Yangzhou: Yangzhou University, 2018.
|
[12] |
|
|
Sun Z L, Wang J, Yang X Q, Wei Y, Li C S, Xiang Y, Zhao Y Q. Application of proteomics technology in algae research[J]. Journal of Food Safety & Quality, 2020, 11(2):350-357.
|
[13] |
|
|
Zhang H Y. Genetic diversity analysis and Verticillium wilt resistance evaluation of eggplant germplasm resources[D]. Nanchang: Jiangxi Agricultural University, 2019.
|
[14] |
|
|
Wu L Y, Guo Z X, Zeng L, Bao R, Li Z B, Gong Y J. Resistance identification of Yunnan wild eggplant resources to Verticillium wilt[J]. Journal of Plant Genetic Resources, 2017, 18(6):1046-1054.
|
[15] |
Hu X P, Puri K D, Gurung S, Klosterman S J, Wallis C M, Britton M, Durbin-Johnson B, Phinney B, Salemi M, Short D P G, Subbarao K V. Proteome and metabolome analyses reveal differential responses in tomato- Verticillium dahliae-interactions[J]. Journal of Proteomics, 2019, 207:103449.doi: 10.1016/j.jprot.2019.103449.
URL
|
[16] |
Gramazio P, Blanca J, Ziarsolo P, Herraiz F J, Plazas M, Prohens J, Vilanova S. Transcriptome analysis and molecular marker discovery in Solanum incanum and S.aethiopicum, two close relatives of the common eggplant ( Solanum melongena) with interest for breeding[J]. BMC Genomics, 2016, 17(1):1-17.doi: 10.1186/s12864-016-2631-4.
|
[17] |
薛金燕. 茄子远缘杂交亲和性及受精障碍分析[D]. 扬州: 扬州大学, 2020.
|
|
Xue J Y. Analysis on compatibility and fertilization obstacle of eggplant distant crossing[D]. Yangzhou: Yangzhou University, 2020.
|
[18] |
|
|
Wu L Y, Du G H, Bao R, Li Z B, Gong Y J. Classification and genetic diversity of wild eggplant resources in Yunnan[J]. Chinese Journal of Tropical Crops, 2018, 39(6):1075-1080.
|
[19] |
Wu L Y, Du G H, Bao R, Li Z B, Gong Y J, Liu F H. De novo assembly and discovery of genes involved in the response of Solanum sisymbriifolium to Verticillium dahlia[J]. Physiology and Molecular Biology of Plants, 2019, 25(4):1009-1027.doi: 10.1007/s12298-019-00666-4.
|
[20] |
Wang W, Vignani R, Scali M, Cresti M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis, 2006, 27(13):2782-2786.doi: 10.1002/elps.200500722.
pmid: 16732618
|
[21] |
Wis'niewski J R, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis[J]. Nature Methods, 2009, 6(5):359-362.doi: 10.1038/nmeth.1322.
pmid: 19377485
|
[22] |
|
|
Liu D, Cui Y L, Qian Z W. Research advances in the seed industry and breeding of eggplant[J]. Northern Horticulture, 2019(1):165-170.
|
[23] |
|
|
Xu Q, Wu L L, Wang M, Li X P, Guo W Z, Pei L. Proteomics analysis of Gossypium barbadense leaves with resistance to Verticillium dahliae under infection stress[J]. Cotton Science, 2017, 29(6):533-540.
|
[24] |
|
|
Hu Y. Study on the mechanism of Pyricularia indica enhancing plant Verticillium wilt resistance based on iTRAQ technology[D]. Taigu: Shanxi Agricultural University, 2019.
|
[25] |
Jian G L, He L, Zhang H C, Si N. Verticillium dahlia toxin to resistant and susceptible cultivar of Gossypium hirsutum leaf proteomic by iTRAQ[C]// Proceedings of the 2021 Academic Annual Meeting of the Chinese Society of Plant Pathology. Guiyang: Chinese Society of Plant Pathology, 2021:175.doi: 10.26914/c.cnkihy.2021.063778.
|
[26] |
李利利. 棉花受大丽轮枝菌侵染引起的免疫反应与抗病性的关系[D]. 南京: 南京农业大学, 2018.
|
|
Li L L. Relationship between immune response and disease resistance of cotton infected by Verticillium dahliae[D]. Nanjing: Nanjing Agricultural University, 2018.
|
[27] |
|
|
Li F. Study on Verticillium wilt of alfalfa in China[D]. Lanzhou: Lanzhou University, 2021.
|
[28] |
|
|
Wu L Y. Tissue structure,physiological and biochemical response and gene expression analysis of Solanum melongena infected by Verticillium dahliae[D]. Kunming: Yunnan University, 2020.
|
[29] |
|
|
Wang Q Y. Proteomic analysis of Verticillium wilt resistance and functional identification of disease resistance genes in upland cotton based on iTRAQ technology[D]. Baoding: Hebei Agricultural University, 2019.
|
[30] |
|
|
Wang Z, Yang Q. Physio-biochemical analysis of Solanum torvum defense against Verticillium dahliae infection[J]. China Biotechnology, 2011, 31(7):65-71.
|
[31] |
侯丽娟. 棉花黄萎病菌毒素生物活性测定及其对棉苗生化代谢的影响[D]. 杨凌: 西北农林科技大学, 2021.
|
|
Hou L J. Bioassaying to toxin of verticillium dahliae and effect of the toxin on biochemistry metabolism of cotton seedlings[D]. Yangling: Northwest A & F University, 2021.
|
[32] |
赵明敏. 茄子抗黄萎病突变体离体筛选及抗病生理的研究[D]. 呼和浩特: 内蒙古农业大学, 2002.
|
|
Zhao M M. Screening of eggplant mutants resistant to Verticillium wilt in vitro and study on disease resistance physiology[D]. Hohhot: Inner Mongolia Agricultural University, 2002.
|
[33] |
|
|
Zhao F A. Differential expression analysis of upland cotton and wild cotton induced by Verticillium dahliae and cloning of disease-resistance related genes[D]. Kaifeng: Henan University, 2012.
|
[34] |
|
|
Gao W. Proteomic analysis of molecular mechanism in cotton defense response to Verticillium dahliae and functional characterization of HDTF1[D]. Wuhan: Huazhong Agricultural University, 2014.
|
[35] |
Dhar N, Chen J Y, Subbarao K V, Klosterman S J. Hormone signaling and its interplay with development and defense responses in Verticillium-plant interactions[J]. Frontiers in Plant Science, 2020, 11:584997.doi: 10.3389/fpls.2020.584997.
URL
|
[36] |
|
|
Wang Z W, Bei X J, Zhu S P, Ma Y Y, Yang R T. Recent advances in phytohormone regulated plant resistance to pathogens[J]. Journal of Anhui Agricultural Sciences, 2011, 39(15):9035-9038,9041.
|
[37] |
Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F.graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6(4):e19008.doi: 10.1371/journal.pone.0019008.
URL
|
[38] |
Wu L Y, Gui M, Liu J X, Cheng J, Li Z B, Bao R, Chen X, Gong Y J, Du G H. Comparative proteomic analysis of roots from a wild eggplant species Solanum sisymbriifolium in defense response to Verticillium dahliae inoculation[J]. Genes, 2023, 14(6):1247.doi: 10.3390/genes14061247.
URL
|
[39] |
Li L, Sheen J. Dynamic and diverse sugar signaling[J]. Current Opinion in Plant Biology, 2016, 33:116-125.doi: 10.1016/j.pbi.2016.06.018.
pmid: 27423125
|
[40] |
|
|
Wang J. Function and mechanisms of apoplastic glucose signaling in tomato disease resistance under low light condition[D]. Hangzhou: Zhejiang University, 2021.
|
[41] |
Wu L J, Han Z P, Wang S X, Wang X T, Sun A G, Zu X F, Chen Y H. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with Sugarcane mosaic virus[J]. Journal of Proteomics, 2013, 89:124-140.doi: 10.1016/j.jprot.2013.06.005.
URL
|
[42] |
|
|
Wan Q. Verticillium dahliae infection inspection and transcriptomic and phosphoproteomic analysis in cotton[D]. Nanjing: Nanjing Agricultural University, 2016.
|