[1] 李静, 刘思敏, 蔡丽静, 王昭玉, 董丽君, 刘建凤, 张书玲. 海岛棉GbWRKY53 基因的克隆与表达分析[J].中国农业科技导报, 2017, 19(11):15-21.doi:10.13304/j.nykjdb.2017.0200. L J, Liu S M, Cai L J, Wang Z Y, Dong L J, Liu J F, Zhang S L. Cloning and expression analysis of GbWRKY53 in G. barbadense[J]. Journal of Agricultural Science and Technology, 2017, 19(11):15-21. [2] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular & General Genetics, 1994, 244(6):563-571. doi:10.1007/BF00282746. [3] Yan Y, Jia H H, Wang F, Wang C, Liu S C, Guo X Q. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana[J]. Frontiers in Physiology, 2015, 6:265.doi:10.3389/fphys.2015.00265. [4] Rinerson C I, Rabara R C, Tripathi P, Shen Q J, Rushton P J. The evolution of WRKY transcription factors[J]. BMC Plant Biology, 2015, 15:66. doi:10.1186/s12870-015-0456-y. [5] 向小华,吴新儒,晁江涛,杨明磊,杨帆,陈果,刘贯山,王元英.普通烟草WRKY基因家族的鉴定及表达分析[J].遗传,2016, 38(9):840-856.doi:10.16288/j.yczz.16-016. Xang X H, Wu X R, Chao J T, Yang M L, Yang F, Chen G, Liu G S, Wang Y Y. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco(Nicotiana tabacum L.)[J]. Hereditas, 2016, 38(9):840-856. [6] Liu Q P, Liu Y, Tang Y M, Chen J N, Ding W. Overexpression of NtWRKY50 increases resistance to Ralstoniasolanacearum and alters salicylic acid and jasmonic acid production in tobacco[J]. Frontiers in Plant Science, 2017, 8:1710. doi:10.3389/fpls.2017.01710. [7] Adachi H, Ishihama N, Nakano T, Yoshioka M, Yoshioka H. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016, 11(6):e1183085. doi:10.1080/15592324.2016.1183085. [8] Birkenbihl R P, Diezel C, Somssich I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J].Plant Physiology,2012, 159(1):266-285.doi:10.1104/pp.111.192641. [9] Geilen K, Böhmer M. Dynamic subnuclear relocalisation of WRKY40 in response to abscisic acid in Arabidopsis thaliana[J]. Sci Rep, 2015, 5:13369. doi:10.1038/srep13369. [10] Lai Z B, Vinod K M, Zheng Z Y, Fan B F, Chen Z X.Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J]. BMC Plant Biology, 2008, 8(1):68.doi:10.1186/1471-2229-8-68. [11] Kloth K J, Wiegers G L, Busscher-Lange J,Van Haarst J C, Kruijer W, Bouwmeester H J, Dicke M, Jongsma M A. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling[J]. Journal of Experimental Botany, 2016, 67(11):3383-3396. doi:10.1093/jxb/erw159. [12] Xing D H, Lai Z B, Zheng Z Y, Vinod K M, Fan B F, Chen Z X. Stress-and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Molecular Plant, 2008, 1(3):459-470.doi:10.1093/mp/ssn020. [13] Kim K C, Fan B F, Chen Z X. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiology, 2006, 142(3):1180-1192.doi:10.1104/pp.106.082487. [14] 雷煜. miR164-GhNAC100和GhWRKY22参与棉花抗黄萎病的机制分析[D]. 兰州:甘肃农业大学, 2018:19-36. Li Y. The mechanisms analysis of miR164-GhNAC100 and GhWRKY22 participating in cotton resistance to Verticillium wilt[D]. Lanzhou:Gansu Agricultural University, 2018:19-36. [15] Xu Y Y, Hall Ⅲ C,Wolf-Hall C, Manthey F. Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system[J]. International Journal of Food Microbiology, 2008, 121(3):262-267. doi:10.1016/j.ijfoodmicro.2007.11.005. [16] Zhang Z N, Ge X Y, Luo X L, Wang P, Fan Q, Hu G, Xiao J L, Li F G, Wu J H. Simultaneous editing of two copies of Gh14-3-3d, confers enhanced transgene-clean plant defense against Verticillium dahliae, in allotetraploid upland cotton[J]. Frontiers in Plant Science, 2018, 9:842.doi:10.3389/fpls.2018.00842. [17] Yang Y W, Chen T Z, Ling X T, Ma Z Q. Gbvdr6, a gene encoding a receptor-like protein of cotton (Gossypium barbadense), confers resistance to Verticillium Wilt in Arabidopsis and Upland cotton[J]. Frontiers in Plant Science,2018,8:2272.doi:10.3389/fpls.2017.02272. [18] Gong Q, Yang Z E, Wang X Q, Butt H I, Chen E Y, He S P, Zhang C J, Zhang X Y, Li F G. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J]. BMC Plant Biology, 2017, 17(1):59. doi:10.1186/s12870-017-1007-5. [19] Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(5):492-499. doi:10.1094/MPMI-20-5-0492. [20] Shimono M, Sugano S, Nakayama A, Jiang C J, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19(6):2064-2076. doi:10.1105/tpc.106.046250. [21] Li C, He X, Luo X Y, Xu L, Liu L L, Min L, Jin L, Zhu L F, Zhang X L. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating jasmonatezim-domain1 expression[J]. Plant Physiology, 2014, 166(4):2179-2194.doi:10.1104/pp.114.246694. [22] Kim K C, Lai Z B, Fan B F, Chen Z X. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. The Plant Cell, 2008, 20(9):2357-2371. doi:10.1105/tpc.107.055566. [23] Wang X L, Yan Y, Li Y Z, Chu X Q, Wu C G, Guo X Q. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One, 2014, 9(4):e93577.doi:10.1371/journal.pone.0093577. |