[1] |
|
|
Ren M H, Zhang J Y, Cui X D, Chen R H, Liu Q G. Diversity of Ralstonia solanacearum strains from tomato in the south of Jiangxi Province[J]. Journal of South China Agricultural Universit, 2022, 43(1):67-76.
|
[2] |
|
|
Gong C, Li Z X, Mai P T, Sun B J, Li Z L, Li T. Research progress of rhizosphere microorganisms related to tomato bacterial wilt resistance[J]. Guangdong Agricultural Sciences, 2021, 48(9):51-61.
|
[3] |
Wang L, Gao Y, Jiang N H, Yan J, Lin W P, Cai K Z. Silicon controls bacterial wilt disease in tomato plants and inhibits the virulence-related gene expression of Ralstonia solanacearum[J]. International Journal of Molecular Sciences, 2022, 23(13):6965.doi: 10.3390/ijms23136965.
URL
|
[4] |
Shi J L, Shui D J, Su S W, Xiong Z L, Zai W S. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato[J]. BMC Genomics, 2023, 24(1):159.doi: 10.1186/s12864-023-09237-0.
|
[5] |
da Silva Xaviera A, de Almeida J C F, de Melo A G, Rousseau G M, Tremblay D M, de Rezende R R, Moineau S, Alfenas-Zerbini P. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex[J]. Molecular Plant Patholog, 2019, 20(2):223-239.doi: 10.1111/mpp.12750.
|
[6] |
|
|
She X M, He Z F. Advances in studies on crop bacterial wilt caused by Ralstonia solanacearum[J]. Guangdong Agricultural Sciences, 2020, 47(12):82-89.
|
[7] |
He M M, Shah Jahan M, Wang Y, Sun J, Shu S, Guo S R. Compost amendments based on vinegar residue promote tomato growth and suppress bacterial wilt caused by Ralstonia solanacearum[J]. Pathogens, 2020, 9(3):227.doi: 10.3390/pathogens9030227.
URL
|
[8] |
Ulker B, Somssich I E. WRKY transcription factors:from DNA binding towards biological function[J]. Current Opinion in Plant Biolog, 2004, 7(5):491-498.doi: 10.1016/j.pbi.2004.07.012.
|
[9] |
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206.doi: 10.1016/s1360-1385(00)01600-9.
pmid: 10785665
|
[10] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258.doi: 10.1016/j.tplants.2010.02.006.
pmid: 20304701
|
[11] |
Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research, 2005, 12(1):9-26.doi: 10.1093/dnares/12.1.9.
URL
|
[12] |
Zhang Y J, Wang L J. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biolog, 2005, 5:1.doi: 10.1186/1471-2148-5-1.
|
[13] |
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5'upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular & General Genetics, 1994, 244(6):563-571.doi: 10.1007/bf00282746.
|
[14] |
Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J]. Plant and Cell Physiolog, 2008, 49(6):865-879.doi: 10.1093/pcp/pcn061.
|
[15] |
Huang S X, Gao Y F, Liu J K, Peng X L, Niu X L, Fei Z J, Cao S Q, Liu Y S. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Molecular Genetics and Genomics, 2012, 287(6):495-513.doi: 10.1007/s00438-012-0696-6.
URL
|
[16] |
Bencke-Malato M, Cabreira C, Wiebke-Strohm B, Bücker-Neto L, Mancini E, Osorio M B, Homrich M S, Turchetto-Zolet A C, De Carvalho M C, Stolf R, Weber R L, Westergaard G, Castagnaro A P, Abdelnoor R V, Marcelino-Guimarães F C, Margis-Pinheiro M, Bodanese-Zanettini M H. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biolog, 2014, 14:236.doi: 10.1186/s12870-014-0236-0.
|
[17] |
Ning P, Liu C C, Kang J Q, Lü J Y. Genome-wide analysis of WRKY transcription factors in wheat( Triticum aestivum L.) and differential expression under water deficit condition[J]. Peer J, 2017, 5:e3232.doi: 10.7717/peerj.3232.
URL
|
[18] |
Zhang T, Tan D F, Zhang L, Zhang X Y, Han Z X. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize[J]. Agri Gene, 2017, 3:99-108.doi: 10.1016/j.aggene.2017.01.001.
URL
|
[19] |
|
|
Yue M L, Jiang L Y, Liu Y, Li Y, Liu Y Q, Chen Q, Lin Y X, Tang H R. Cloning,subcellular location and expression analysis of FaWRKY31 in Fragaria×ananassa[J]. Acta Horticulturae Sinica, 2019, 46(10):1947-1959.
|
[20] |
Lei Y Y, Sun Y P, Wang B T, Yu S, Dai H Y, Li H, Zhang Z H, Zhang J X. Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade[J]. Horticulture Research, 2020, 7:137.doi: 10.1038/s41438-020-00355-4.
|
[21] |
Zhang J, Gu M, Liang R S H, Shi X Y, Chen L L, Hu X, Wang S C, Dai X L, Qu H Y, Li H H, Xu G H. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions[J]. The New Phytologist, 2021, 229(3):1598-1614.doi: 10.1111/nph.16931.
URL
|
[22] |
Rosado D, Ackermann A, Spassibojko O, Rossi M, Pedmale U V. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response[J]. Plant Physiolog, 2022, 188(2):1294-1311.doi: 10.1093/plphys/kiab493.
URL
|
[23] |
Wu M, Zhang K M, Xu Y Z, Wang L N, Liu H X, Qin Z L, Xiang Y. The Moso bamboo WRKY transcription factor, PheWRKY86,regulates drought tolerance in transgenic plants[J]. Plant Physiology and Biochemistr, 2022, 170:180-191.doi: 10.1016/j.plaphy.2021.10.024.
|
[24] |
Yang J, Wang Q N, Luo H L, He C Z, An B. HbWRKY40 plays an important role in the regulation of pathogen resistance in Hevea brasiliensis[J]. Plant Cell Reports, 2020, 39(8):1095-1107.doi: 10.1007/s00299-020-02551-x.
pmid: 32399673
|
[25] |
|
|
Li X, Wang J Y, Liu T L, Zhang X. Cloning and functional analysis of StWRKY-1 in Solanum torvum[C]. Jiangsu Provincial Genetic Society, 2017.
|
[26] |
Jiang Y Y, Zheng W R, Li J, Liu P, Zhong K L, Jin P, Xu M Z, Yang J, Chen J P. NbWRKY40 positively regulates the response of Nicotiana benthamiana to tomato mosaic virus via salicylic acid signaling[J]. Frontiers in Plant Science, 2020, 11:603518.doi: 10.3389/fpls.2020.603518.
URL
|
[27] |
Wang W J, Li T, Chen Q, Yao S X, Deng L L, Zeng K F. CsWRKY25 improves resistance of Citrus fruit to Penicillium digitatum via modulating reactive oxygen species production[J]. Frontiers in Plant Science, 12:818198.doi: 10.3389/fpls.2021.818198.
URL
|
[28] |
Yin W C, Wang X H, Liu H, Wang Y, van Nocker S, Tu M X, Fang J H, Guo J Q, Li Z, Wang X P. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis[J]. Horticulture Research, 2022, 9:uhab064.doi: 10.1093/hr/uhab064.
URL
|
[29] |
Ahammed G J, Li X, Mao Q, Wan H J, Zhou G Z, Cheng Y. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought[J]. Physiologia Plantarum, 2021, 172(2):885-895.doi: 10.1111/ppl.13243.
URL
|
[30] |
Ramos R N, Martin G B, Pombo M A, Rosli H G. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana[J]. Plant Molecular Biolog, 2021, 105(1/2):65-82.doi: 10.1007/s11103-020-01069-w.
|
[31] |
Guo M Y, Yang F J, Liu C X, Zou J P, Qi Z Y, Fotopoulos V, Lu G, Yu J Q, Zhou J. A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato[J]. The New Phytologist, 2022, 236(3):989-1005.doi: 10.1111/nph.18403.
URL
|
[32] |
Huang H, Zhao W C, Li C H, Qiao H, Song S S, Yang R, Sun L L, Ma J L, Ma X C, Wang S H. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato[J]. Plant Physiolog, 2022, 190(1):828-842.doi: 10.1093/plphys/kiac275.
URL
|
[33] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[34] |
|
|
Chen N. Expression characteristics and functional identification of SmNAC transcription factor in eggplant[D]. Guangzhou: South China Agricultural University, 2016.
|
[35] |
张婷, 柏杨, 亓希武, 于盱, 房海灵, 李莉, 刘冬梅, 梁呈元, 李维林. 薄荷 MhWRKY57基因克隆及响应茉莉酸信号的表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(6):279-287.doi: 10.12302/j.issn.1000-2006.202109036.
|
|
Zhang T, Bai Y, Qi X W, Yu X, Fang H L, Li L, Liu D M, Liang C Y, Li W L. Cloning and expression analyses of MhWRKY57 response to jasmonic acid in Mentha canadensis[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6):279-287.
|
[36] |
张冬梅, 冯亚艳, 修志君, 杨春芳, 杜美娥, 李得宙, 张笑宇. 硅酸钠诱导的马铃薯抗黑痣病 StWRKY11基因克隆及生物信息学分析[J]. 华北农学报, 2022, 37(5):194-203.doi: 10.7668/hbnxb.20192773.
|
|
Zhang D M, Feng Y Y, Xiu Z J, Yang C F, Du M E, Li D Z, Zhang X Y. Cloning and bioinformatics analysis of resistant gene StWRKY11 induced by sodium silicate in potato by Rhizoctonia solani[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5):194-203.
|
[37] |
|
|
Yin M Y, Yu Y N, Du G H, Gui M, Li Z B, Bao R, Gong Y J, Wu L Y. Cloning and expression analysis of SsWRKY1 gene in Solanum sisymbriifolium under stress of verticillium wilt disease[J]. Journal of Southern Agriculture, 2022, 53(4):1000-1010.
|
[38] |
Hong Y H, Cui J, Liu Z, Luan Y S. SpWRKY6 acts as a positive regulator during tomato resistance to Phytophthora infestans infection[J]. Biochemical and Biophysical Research Communications, 2018, 506(4):787-792.doi: 10.1016/j.bbrc.2018.10.155.
URL
|
[39] |
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum, 2020, 168(1):98-117.doi: 10.1111/ppl.12978.
URL
|
[40] |
Gharsallah C, Gharsallah Chouchane S, Werghi S, Mehrez M, Fakhfakh H, Gorsane F. Tomato contrasting genotypes responses under combined salinity and viral stresses[J]. Physiology and Molecular Biology of Plants, 2020, 26(7):1411-1424.doi: 10.1007/s12298-020-00835-w.
pmid: 32647458
|
[41] |
Shu P, Zhang S J, Li Y J, Wang X Y, Yao L, Sheng J P, Shen L. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways[J]. Plant Physiology and Biochemistr, 2021, 166:1-9.doi: 10.1016/j.plaphy.2021.05.021.
|
[42] |
Negi N, Khurana P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response[J]. Plant Cell Reports, 2021, 40(11):2151-2171.doi: 10.1007/s00299-021-02710-8.
|