[1] |
Fiallo-Olivé E, Navas-Castillo J. Tomato chlorosis virus,an emergent plant virus still expanding its geographical and host ranges[J]. Molecular Plant Pathology, 2019, 20(9):1307-1320.doi: 10.1111/mpp.12847.
pmid: 31267719
|
[2] |
Pereira L S, Lourenção A L, Salas F J S, Bento J M S, Rezende J A M, Peñaflor M F G V. Infection by the semi-persistently transmitted Tomato chlorosis virus alters the biology and behaviour of Bemisia tabaci on two potato clones[J]. Bulletin of Entomological Research, 2019, 109(5):604-611.doi: 10.1017/s0007485318000974.
pmid: 30616696
|
[3] |
|
|
Wang T Q, Shi X B, Zheng L M, Liu Y, Zhang D Y, Tan X Q, Zhou X G. Cucumber(Cucumis sativus)is a new host for Tomato chlorosis virus[J]. Plant Protection, 2020, 46(2):91-95.
|
[4] |
Fiallo-Olivé E, Hamed A A, Moriones E, Navas-Castillo J. First report of Tomato chlorosis virus infecting tomato in Sudan[J]. Plant Disease, 2011, 95(12):1592.doi: 10.1094/pdis-08-11-0631.
pmid: 30731991
|
[5] |
Martínez-Zubiaur Y, Fiallo-Olivé E, Carrillo-Tripp J, Rivera-Bustamante R. First report of Tomato chlorosis virus infecting tomato in single and mixed infections with Tomato yellow leaf curl virus in Cuba[J]. Plant Disease, 2008, 92(5):836.doi: 10.1094/pdis-92-5-0836c.
pmid: 30769609
|
[6] |
Tsai W S, Shih S L, Green S K, Hanson P, Liu H.Y. First report of the occurrence of Tomato chlorosis virus and Tomato infectious chlorosis virus in Taiwan[J]. Plant Dis ease, 2004, 88(3):311.doi: 10.1094/PDIS.2004.88.3.311B.
|
[7] |
|
|
Chang X L, Wu X W, Yuan Y D, Zhang T S, Gu H T, Wang D S, Wang P, Wang R. Research progress on two important arbovirus diseases in tomato[J]. Shanghai Agricultural Society, 2024, 40(3):122-127.
|
[8] |
Wisler G C, Li R H, Liu H Y, Lowry D S, Duffus J E. Tomato chlorosis virus:a new whitefly-transmitted,phloem-limited,bipartite closterovirus of tomato[J]. Phytopathology, 1998, 88(5):402-409.doi: 10.1094/phyto.1998.88.5.402.
pmid: 18944918
|
[9] |
Wintermantel W M, Wisler G C, Anchieta A G, Liu H Y, Karasev A V, Tzanetakis I E. The complete nucleotide sequence and genome organization of Tomato chlorosis virus[J]. Archives of Virology, 2005, 150(11):2287-2298.doi: 10.1007/s00705-005-0571-4.
pmid: 16003497
|
[10] |
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares M C. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage[J]. Virology, 2016, 488:129-136.doi: 10.1016/j.virol.2015.11.008.
pmid: 26629953
|
[11] |
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares M. The heterologous expression of the p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus from Tobacco rattle virus and Potato virus X enhances disease severity but does not complement suppressor-defective mutant viruses[J]. Viruses, 2017, 9(12):358.doi: 10.3390/v9120358.
|
[12] |
Tzanetakis I E, Martin R R, Wintermantel W M. Epidemiology of criniviruses:an emerging problem in world agriculture[J]. Frontiers in Microbiology, 2013, 4:119.doi: 10.3389/fmicb.2013.00119.
pmid: 23730300
|
[13] |
Pallas V, García J A. How do plant viruses induce disease?Interactions and interference with host components[J]. Journal of General Virology, 2011, 92(12):2691-2705.doi: 10.1099/vir.0.034603-0.
|
[14] |
Rothenburg S, Brennan G. Species-specific host virus interactions:implications for viral host range and virulence[J]. Trends in Microbiology, 2020, 28(1):46-56.doi: 10.1016/j.tim.2019.08.007.
pmid: 31597598
|
[15] |
Sun X H, Zang L Y, Liu X Y, Jiang S S, Zhang X P, Zhao D, Shang K J, Zhou T, Zhu C X, Zhu X P. Interactions of Tomato chlorosis virus p27 protein with tomato catalase are involved in viral infection[J]. Viruses, 2023, 15(4):990.doi: 10.3390/v15040990.
|
[16] |
|
|
Niu X H, Zhang X P, Zang L Y, Zhao D, Shang K J, Zhu C X, Liu H M, Zhou T, Zhu X P. Interaction and function of p27 and GATA proteins in Tomato chlorotic virus[C]. Shandong:Chinese Society of Plant Pathology 2023 Annual Conference,2023:1.
|
[17] |
Shang K J, Xiao L, Zhang X P, Zang L Y, Zhao D, Wang C C, Wang X P, Zhou T, Zhu C X, Zhu X P. Tomato chlorosis virus p22 interacts with NbBAG5 to inhibit autophagy and regulate virus infection[J]. Molecular Plant Pathology, 2023, 24(5):425-435.doi: 10.1111/mpp.13311.
|
[18] |
张先平, 臧连毅, 赵丹, 尚凯杰, 朱常香, 刘红梅, 周涛, 竺晓平. 番茄HIR1蛋白与番茄褪绿病毒HSP70h蛋白互作介导寄主抗性的分子机制研究[C]. 山东: 中国植物病理学会2023年学术年会论文集, 2023:1.doi: 10.26914/c.cnkihy.2023.039185.
|
|
Zhang X P, Zang L Y, Zhao D, Shang K J, Zhu C X, Liu H M, Zhou T, Zhu X P. Molecular mechanism of host resistance mediated by tomato HIR1 protein and Tomato chlorotic virus HSP70h protein[C]. Shandong:Chinese Society of Plant Pathology 2023 Annual Conference,2023:1.
|
[19] |
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in phloem transport of plant viruses[J]. Frontiers in Plant Science, 2013, 4:154.doi: 10.3389/fpls.2013.00154.
pmid: 23745125
|
[20] |
Schoelz J E, Harries P A, Nelson R S. Intracellular transport of plant viruses:finding the door out of the cell[J]. Molecular Plant, 2011, 4(5):813--831.doi: 10.1093/mp/ssr070.
|
[21] |
Vuorinen A L, Kelloniemi J, Valkonen J P T. Why do viruses need phloem for systemic invasion of plants?[J]. Plant Science, 2011, 181(4):355-363.doi: 10.1016/j.plantsci.2011.06.008.
pmid: 21889041
|
[22] |
Qiu Y H, Zhang Y J, Wang C N, Lei R, Wu Y P, Li X S, Zhu S F. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein[J]. Scientific Reports, 2018, 8:1205.doi: 10.1038/s41598-018-19525-5.
|
[23] |
潘睿婧, 张先平, 臧连毅, 赵丹, 尚凯杰, 朱常香, 刘红梅, 周涛, 竺晓平. 番茄褪绿病毒外壳蛋白与S-腺苷高半胱氨酸水解酶的互作及对植物DNA甲基化的影响[C]. 山东: 中国植物病理学会2023年学术年会, 2023:1.doi: 10.26914/c.cnkihy.2023.039058.
|
|
Pan R J, Zhang X P, Zang L Y, Zhao D, Shang K J, Zhu C X, Liu H M, Zhou T, Zhu X P. Interaction between the coat protein of Tomato chlorotic virus and S-adenosine homocysteine hydrolase and its effect on DNA methylation in plants[C]. Shandong:Chinese Society of Plant Pathology 2023 Annual Conference,2023:1.
|
[24] |
Satake Y, Gotouda N, Tanaka S. Isolating interaction-null/impaired mutants using the yeast two-hybrid assay[J]. Journal of Visualized Experiments, 2023(202): e66423.doi: 10.3791/66423.
|
[25] |
许向阳, 裴童, 吴泰茹, 王子玉, 赵婷婷, 李景富, 杨欢欢, 姜景彬, 张贺. Cf-19介导的抗番茄叶霉病( Cladosporium fulvum)免疫应答酵母双杂交cDNA文库构建和鉴定[J]. 东北农业大学学报, 2020, 51(5):10-16.doi: 10.19720/j.cnki.issn.1005-9369.2020.05.0002.
|
|
Xu X Y, Pei T, Wu T R, Wang Z Y, Zhao T T, Li J F, Yang H H, Jiang J B, Zhang H. Construction and identification of yeast two-hybrid cDNA library for Cf-19 mediated resistance to Cladosporium fulvum infection in tomato[J]. Journal of Northeast Agricultural University, 2020, 51(5):10-16.
|
[26] |
宁小清, 张璐, 潘瑞兰, 曾泉, 陈保善, 蒙姣荣. 利用酵母双杂交系统筛选与黄瓜花叶病毒外壳蛋白互作的寄主蛋白[J]. 基因组学与应用生物学, 2019, 38(7):3123-3131.doi: 10.13417/j.gab.038.003123.
|
|
Ning X Q, Zhang L, Pan R L, Zeng Q, Chen B S, Meng J R. Host proteins that interact with coat protein of Cucumber mosaic virus screened by yeast two hybrid system[J]. Genomics and Applied Biology, 2019, 38(7):3123-3131.
|
[27] |
范小燕. CGMMV CP蛋白特征分析及其与病毒蛋白和寄主因子互作的研究[D]. 荆州: 长江大学, 2018.
|
|
Fan X Y. Analysis on the characteristics of CGMMV CP protein and its interaction with virus protein and host factors[D]. Jingzhou: Yangtze University, 2018.
|
[28] |
|
|
Chen L P, Ming R H, Tan C M, Huang D, Huang R S, Yao S C. Construction of yeast two-hybrid library and identification of CsMYB36 interacting proteins in Niu Dali nuclear system[J]. Traditional Chinese medicine, 2024(8):1877-1886.
|
[29] |
Wang S J, You R H, Liu Y J, Xiong Y, Zhu S F. NetGO 3.0:protein language model improves large-scale functional annotations[J]. Genomics, Proteomics & Bioinformatics, 2023, 21(2):349-358.doi: 10.1016/j.gpb.2023.04.001.
|
[30] |
|
|
Zhu J, Lu D, Zhang D Y, Zhang Z H, Zhang Z, Shi X B, Liu Y. Effect of ToCV and TYLCV infection on detoxification enzymes of Bemisia tabaci[J]. Acta Horticulturae Sinica, 2024, 51(2):411-422.
|
[31] |
Fields S, Song O K. A novel genetic system to detect protein protein interactions[J]. Nature, 1989, 340(6230):245-246.doi: 10.1038/340245a0.
|
[32] |
Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22):10340-10344.doi: 10.1073/pnas.91.22.10340.
pmid: 7937952
|
[33] |
Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V. DNA-protein interactions:methods for detection and analysis[J]. Molecular and Cellular Biochemistry, 2012, 365(1):279-299.doi: 10.1007/s11010-012-1269-z.
|
[34] |
|
|
Li Y F, Li Z F, Du Y, Han Y Y, Liu C J, Hao J H. Construction and identification of yeast library of nuclear system in leaf lettuce under high temperature stress[J]. Journal of Beijing University of Agriculture, 2022, 37(2):50-54.
|
[35] |
|
|
Gan S X, Yang L, Ren C M, Miao Q, Cheng Z B, Ji Y H. Characterization of the subcellular localization and pathogenicity of Cucurbit chlorotic yellows virus coat protein[J]. Plant Protection, 2024, 50(2):240-245.
|
[36] |
Niu E B, Ye C Z, Zhao W Y, Kondo H, Wu Y F, Chen J P, Andika I B, Sun L Y. Coat protein of Chinese wheat mosaic virus upregulates and interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase,a negative regulator of plant autophagy,to promote virus infection[J]. Journal of Integrative Plant Biology, 2022, 64(8):1631-1645.doi: 10.1111/jipb.13313.
|
[37] |
|
|
Yang J, Jin P, Liu P, Yang J, Wang Y, Dai L Y, Chen J P. Transgenetic expression coat protein of Chinese wheat mosaic virus (CWMV)enhances resistance of Nicotiana benthamiana to CWMV[J]. Journal of Zhejiang A & F University, 2020, 37(2):291-295.
|
[38] |
Weber P H, Bujarski J J. Multiple functions of capsid proteins in(+)stranded RNA viruses during plant virus interactions[J]. Virus Research, 2015, 196:140-149.doi: 10.1016/j.virusres.2014.11.014.
|
[39] |
Prokhnevsky A I, Peremyslov V V, Napuli A J, Dolja V V. Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus[J]. Journal of Virology, 2002, 76(21):11003-11011.doi: 10.1128/jvi.76.21.11003-11011.2002.
|
[40] |
Huang Y W, Hu C C, Liou M R, Chang B Y, Tsai C H, Meng M, Lin N S, Hsu Y H. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA[J]. PLoS Pathogens, 2012, 8(5):e1002726.doi: 10.1371/journal.ppat.1002726.
|
[41] |
Gorovits R, Moshe A D, Ghanim M, Czosnek H. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection[J]. PLoS One, 2013, 8(7):e70280.doi: 10.1371/journal.pone.0070280.
|
[42] |
|
|
Li Q W, Xu J, Li Y. Research progress on function and evolution of heat shock protein[J]. Journal of Liaoning Normal University(Natural Science Edition), 2024, 47(1):78-85.
|
[43] |
Wang G D, Kong F Y, Zhang S, Meng X, Wang Y, Meng Q W. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress[J]. Journal of Expreimental Botany, 2015, 66(11):3027-3040.doi: 10.1093/jxb/erv102.
|
[44] |
Wang G D, Cai G H, Xu N, Zhang L T, Sun X L, Guan J, Meng Q W. Novel DnaJ protein facilitates thermotolerance of transgenic tomatoes[J]. International Journal of Molecular Sciences, 2019, 20(2):367.doi: 10.3390/ijms20020367.
|
[45] |
Gao Y H, Zhang D Z, Li J. TCP1 modulates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana[J]. Journal of Genetics and Genomics, 2015, 42(7):383-392.doi: 10.1016/j.jgg.2015.04.009.
|
[46] |
齐香玉, 李新茹, 陈双双, 冯景, 陈慧杰, 金玉妍, 苗艳华, 邓衍明. 茉莉花TCP基因家族全基因组鉴定及其表达分析[J]. 华北农学报, 2024, 39(1): 63-71. doi: 10.7668/hbnxb.20194408.
|
|
Qi X Y, Li X R, Chen S S, Feng J, Chen H J, Jin Y Y, Miao Y H, Deng Y M. Genome-wide identification of TCP gene family in Jasminum sambac and expression analysis involved in flower development and pollen-pistil interaction[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 63-71.
|
[47] |
|
|
Feng Y L, Xiong Y, Zhang J, Chen X N, Guo J R, Ma C. Role of TCP transcription factors in plant development and biotic stress responses[J]. Plant Physiology Journal, 2018, 54(5):709-717.
|