[1] |
Yu T, Zhang J G, Cao J S, Cai Q, Li X, Sun Y, Li S N, Li Y L, Hu G H, Cao S L, Liu C H, Wang G Q, Wang L S, Duan Y J. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels[J]. Genomics, 2021, 113(2):782-794.doi: 10.1016/J.YGENO.2021.01.018.
doi: 10.1016/j.ygeno.2021.01.018
pmid: 33516847
|
[2] |
Enders T A, St Dennis S, Oakland J, Callen S T, Gehan M A, Miller N D, Spalding E P, Springer N M, Hirsch C D. Classifying cold stress responses of inbred maize seedlings using RGB imaging[J]. bioRxiv, 2018.doi: 10.1101/432039.
doi: 10.1101/432039
|
[3] |
王琪, 马树庆, 郭建平, 张铁林, 于海, 徐丽萍. 温度对玉米生长和产量的影响[J]. 生态学杂志, 2009, 28(2):255-260.
|
|
Wang Q, Ma S Q, Guo J P, Zhang T L, Yu H, Xu L P. Effects of air temperature on maize growth and its yield[J]. Chinese Journal of Ecology, 2009, 28(2):255-260.
|
[4] |
Bhandari K. Chilling stress:how it affects the plants and its alleviation strategies[J]. International Journal of Pharmaceutical Sciences and Research, 2018, 9:2197-2200.doi: 10.13040/IJPSR.0975-8232.9(6).2197-00.
doi: 10.13040/IJPSR.0975-8232.9(6).2197-00
|
[5] |
Fryer M J, Andrews J R, Oxborough K, Blowers D A, Baker N R. Relationship between CO 2 assimilation,photosynthetic electron transport,and active O 2 metabolism in leaves of maize in the field during periods of low temperature[J]. Plant Physiology, 1998, 116(2):571-580.doi: 10.1104/pp.116.2.571.
doi: 10.1104/pp.116.2.571
pmid: 9490760
|
[6] |
Ying J, Lee E A, Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period[J]. Field Crops Research, 2000, 68(2):87-96.doi: 10.1016/S0378-4290(00)00107-6.
doi: 10.1016/S0378-4290(00)00107-6
URL
|
[7] |
Janská A, Mars k P, Zelenková S, Ovesná J. Cold stress and acclimation-what is important for metabolic adjustment?[J]. Plant Biology, 2010, 12(3):395-405.doi: 10.1111/j.1438-8677.2009.00299.x.
doi: 10.1111/j.1438-8677.2009.00299.x
pmid: 20522175
|
[8] |
Ensminger I, Busch F, Huner N P A. Photostasis and cold acclimation:Sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2006, 126(1):28-44.doi: 10.1111/j.1399-3054.2006.00627.x.
doi: 10.1111/j.1399-3054.2006.00627.x
URL
|
[9] |
Teige M, Scheikl E, Eulgem T, Dóoczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J]. Molecular Cell, 2004, 15(1):141-152.doi: 10.1016/j.molcel.2004.06.023.
doi: 10.1016/j.molcel.2004.06.023
URL
|
[10] |
Eremina M, Rozhon W, Poppenberger B. Hormonal control of cold stress responses in plants[J]. Cellular and Molecular Life Sciences, 2016, 73(4):797-810.doi: 10.1007/s00018-015-2089-6.
doi: 10.1007/s00018-015-2089-6
pmid: 26598281
|
[11] |
Revilla P, Rodríguez V M, Ordás A, Rincent R, Charcosset A, Giauffret C, et al. Cold tolerance in two large maize inbred panels adapted to European climates[J]. CSA News, 2014, 59(11):26-27.doi: 10.2134/csa2014-59-11-11.
doi: 10.2134/csa2014-59-11-11
URL
|
[12] |
Sobkowiak A, Jon'czyk M, Adamczyk J, Szczepanik J, Solecka D, Kuciara I, Hetman'czyk K, Trzcinska-Danielewicz J, Grzybowski M, Skoneczny M, Fronk J, Sowin'ski P. Molecular foundations of chilling tolerance of modern maize[J]. BMC Genomics, 2016, 17:125.doi: 10.1186/s12864-016-2453-4.
doi: 10.1186/s12864-016-2453-4
pmid: 26897027
|
[13] |
Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890.doi: 10.1101/274100.
doi: 10.1101/274100
URL
|
[14] |
doi: 10.19462/j.cnki.1671-895x.2020.10.005
|
|
Xu L, Zhao J R, Lu B S, Shi Y X, Fan Y L. Current situation and development trend of fresh corn seed industry in China[J]. China Seed Industry, 2020(10):14-18.
|
[15] |
doi: 10.13597/j.cnki.maize.science.20220125
|
|
Cao Y T, Wang Y H. Analysis of the restrictive factors for the development of fresh corn industry based on DEMATEL-ISM model[J]. Maize Science, 2022, 30(1):182-190.
|
[16] |
doi: 10.3969/j.issn.1674-5329.2021.05.012
|
|
Ma J W. Cultivation technology of sweet corn[J]. Modern Rural Science and Technology, 2021(5): 1.
|
[17] |
doi: 10.16590/j.cnki.1001-4705.2019.12.006
|
|
Wang C, Li Y M, Hao N, Wang Y B. Identification of cold tolerance of maize inbred lines from germination stage to seedling stage[J]. Seed, 2019, 38(12): 7.
|
[18] |
邢江会. 山西省277种不同熟性玉米品种积温需求研究[D]. 太谷: 山西农业大学, 2014.
|
|
Xing J H. Research on the demand of accumulated temperature by 277 kinds of polycarpic maize in Shanxi Province[D]. Taigu: Shanxi Agricultural University, 2014.
|
[19] |
doi: 10.13592/j.cnki.ppj.2017.0142
|
|
Gao X M, Wang J G, Liu Y N, Ma H Y, Chen J, Shi W Q. The plant circadian rhythm and its response to abiotic stresses[J]. Plant Physiology Journal, 2017, 53(10):1833-1841.
|
[20] |
Zhao C Z, Lang Z B, Zhu J K. Cold responsive gene transcription becomes more complex[J]. Trends in Plant Science, 2015, 20(8):466-468.doi: 10.1016/j.tplants.2015.06.001.
doi: 10.1016/j.tplants.2015.06.001
pmid: 26072094
|
[21] |
Kurepin L V, Dahal K P, Savitch L V, Singh J, Bode R, Ivanov A G, Hurry V, Hüner N P A. Role of CBFs as integrators of chloroplast redox,phytochrome and plant hormone signaling during cold acclimation[J]. International Journal of Molecular Sciences, 2013, 14(6):12729-12763.doi: 10.3390/ijms140612729.
doi: 10.3390/ijms140612729
pmid: 23778089
|
[22] |
Dong M A, Farrè E M, Thomashow M F. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-Repeat Binding Factor(CBF)pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2011, 108(17):7241-7246.doi: 10.1073/pnas.1103741108.
doi: 10.1073/pnas.1103741108
URL
|
[23] |
Norihito N, Takatoshi K, Mari K, Takamasa S, Takafumi Y, Tetsuya H, Hitoshi S, Takeshi M. Transcriptional repressor PRR5 directly regulates clock-output pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42):17123-17128.doi: 10.1073/pnas.1205156109.
doi: 10.1073/pnas.1205156109
pmid: 23027938
|
[24] |
Keily J, MacGregor D R, Smith R W, Millar A J, Halliday K J, Penfield S. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock[J]. The Plant Journal, 2013, 76(2):247-257.doi: 10.1111/tpj.12303.
doi: 10.1111/tpj.12303
pmid: 23909712
|