[1] |
|
[2] |
|
|
Wu G T, Lang C X, Chen J Q. Production of erucic acid and development of its derivative products[J]. China Oils and Fats, 2007, 32(6):27-31.
|
[3] |
Wang P D, Xiong X J, Zhang X B, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds:progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds( Brassica napus)[J]. Frontiers in Plant Science, 2022, 13:899076.doi: 10.3389/fpls.2022.899076.
|
[4] |
Mietkiewska E, Giblin E M, Wang S, Barton D L, Dirpaul J, Brost J M, Katavic V, Taylor D C. Seed-specific heterologous expression of a Nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid[J]. Plant Physiology, 2004, 136(1):2665-2675.doi: 10.1104/pp.104.046839.
pmid: 15333757
|
[5] |
Guan R, Lager I, Li X Y, Stymne S, Zhu L H. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica[J]. Plant Biotechnology Journal, 2014, 12(2):193-203.doi: 10.1111/pbi.12128.
pmid: 24119222
|
[6] |
Pushkarova N, Yemets A. Biotechnological approach for improvement of Crambe species as valuable oilseed plants for industrial purposes[J]. RSC Advances, 2022, 12(12):7168-7178.doi: 10.1039/d2ra00422d.
pmid: 35424652
|
[7] |
王幼平, 罗鹏, 李旭峰. 海甘蓝的初步研究[J]. 云南植物研究, 1995(2):169-174.
|
|
Wang Y P, Luo P, Li X F. Preliminery study on Crambe abyssinica[J]. Acta Botanica Yunnanica, 1995(2):169-174.
|
[8] |
Qi W C, Tinnenbroek-Capel I E M, Salentijn E M J, Zhang Z, Huang B Q, Cheng J H, Shao H B, Visser R G F, Krens F A, van Loo E N. Genetically engineering Crambe abyssinica—a potentially high-value oil crop for salt land improvement[J]. Land Degradation & Development, 2018, 29:1096-1106.doi: 10.1002/ldr.2847.
|
[9] |
Samarappuli D, Zanetti F, Berzuini S, Berti M T. Crambe( Crambe abyssinica hochst):a non-food oilseed crop with great potential:a review[J]. Agronomy, 2020, 10(9):1380.doi: 10.3390/agronomy10091380.
|
[10] |
Mietkiewska E, Brost J M, Giblin E M, Barton D L, Taylor D C. Cloning and functional characterization of the fatty acid elongase 1( FAE1)gene from high erucic Crambe abyssinica cv.Prophet[J]. Plant Biotechnology Journal, 2007, 5(5):636-645.doi: 10.1111/j.1467-7652.2007.00268.x.
pmid: 17565584
|
[11] |
Li X Y, van Loo E N, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu L H. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica[J]. Plant Biotechnology Journal, 2012, 10(7):862-870.doi: 10.1111/j.1467-7652.2012.00709.x.
|
[12] |
Guo Y M, Mietkiewska E, Francis T, Katavic V, Brost J M, Giblin M, Barton D L, Taylor D C. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L.3-ketoacyl-CoA synthase(KCS)gene[J]. Plant Molecular Biology, 2009, 69(5):565-575.doi: 10.1007/s11103-008-9439-9.
|
[13] |
Cheng J H, Salentijn E M J, Huang B Q, Krens F A, Dechesne A C, Visser R G F, van Loo E N. Isolation and characterization of the omega-6 fatty acid desaturase(FAD2)gene family in the allohexaploid oil seed crop Crambe abyssinica Hochst[J]. Molecular Breeding, 2013, 32(3):517-531.doi: 10.1007/s11032-013-9886-0.
|
[14] |
王幼平, 罗鹏. 海甘蓝的农学性状观察及评价[J]. 中国油料, 1995(1):16-18.
|
|
Wang Y P, Luo P. Observation of agronomic characteristics and evaluation of Crambe abyssinica[J]. Chinese Journal of Oil Crop Sciences, 1995(1):16-18.
|
[15] |
王幼平, 罗鹏, 高宏波. 高芥酸油料植物海甘蓝的引种和利用[J]. 植物学通报, 1998(3):23-28.
|
|
Wang Y P, Luo P, Gao H B. Introduction and utilization of high erucic acid oil plant Crambe abyssinica[J]. Chinese Bulletin of Botany, 1998(3):23-28.
|
[16] |
|
|
Wang Y P, Lan L F, Jia Y J, Luo P. Studies on introduction and cultivation of Crambe abyssinica with high erucic acid content[J]. Acta Agronomica Sinica, 1999, 25(1):130-133.
|
[17] |
|
|
Han F Y, Wang J, Hu X Y, Xu J S, Xu B B, Zhang X K, Zhao F Y. Comparison of erucic acid biosynthesis of the FAE1 genes encoding the very-long-chain fatty acid elongase from different plant species[J]. Journal of Plant Genetic Resources, 2023, 24(2):569-583.
|
[18] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[19] |
James D W Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1( FAE1)gene with the maize transposon activator[J]. The Plant Cell, 1995, 7(3):309-319.doi: 10.1105/tpc.7.3.309.
|
[20] |
Han J X, Lühs W, Sonntag K, Zähringer U, Borchardt D S, Wolter F P, Heinz E, Frentzen M. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L.[J]. Plant Molecular Biology, 2001, 46(2):229-239.doi: 10.1023/A:1010665121980.
pmid: 11442062
|
[21] |
Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana[J]. Plant Molecular Biology, 2001, 46(6):717-725.doi: 10.1023/a:1011603923889.
pmid: 11575726
|
[22] |
|
|
Huai D X. Effects of key genes regulating the synthesis of super-long chain fatty acids on fatty acid composition in plant seeds[D]. Wuhan: Huazhong Agricultural University, 2015.
|
[23] |
Cheng J H, Salentijn E M J, Huang B Q, Denneboom C, Qi W C, Dechesne A C, Krens F A, Visser R G F, van Loo E N. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica[J]. Plant Biotechnology Journal, 2015, 13(4):471-481.doi: 10.1111/pbi.12269.
|
[24] |
韩凤英. 芥酸高合成能力关键基因FAE1的鉴定及其油菜遗传转化[D]. 荆州: 长江大学, 2023.
|
|
Han F Y. Identification of FAE1,a key gene with high erucic acid synthesis ability,and its genetic transformation in rapeseed[D]. Jingzhou: Yangtze University, 2023.
|
[25] |
Siebel J, Pauls K P. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids[J]. Theoretical and Applied Genetics, 1989, 77(4):489-494.doi: 10.1007/BF00274268.
pmid: 24232714
|
[26] |
吴江生. 甘蓝型油菜芥酸含量的遗传研究[J]. 湖北农业科学, 1989(7):16-17,33.
|
|
Wu J S. Genetic study on erucic acid content in Brassica napus[J]. Hubei Agricultural Sciences, 1989(7):16-17.33.
|
[27] |
|
|
Zhao F Y, Gao Z, Yan H, Tian Z H. Gene cloning and sequence analysis of fatty acid elongase 1(fae1) in Sinapis arvensis L.[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(5):40-44.
|
[28] |
Guan R, Li X Y, Hofvander P, Zhou X R, Wang D N, Stymne S, Zhu L H. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil[J]. Lipids, 2015, 50(4):407-416.doi: 10.1007/s11745-015-4004-1.
pmid: 25753896
|
[29] |
Li X Y, Mei D S, Liu Q, Fan J, Singh S, Green A, Zhou X R, Zhu L H. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and Crambe resulted in significantly increased oleic acid content in seed oil[J]. Plant Biotechnology Journal, 2016, 14(1):323-331.doi: 10.1111/pbi.12386.
|
[30] |
Sagun J V, Yadav U P, Alonso A P. Progress in understanding and improving oil content and quality in seeds[J]. Frontiers in Plant Science, 2023, 14:1116894.doi: 10.3389/fpls.2023.1116894.
|
[31] |
Liu Y H, Du Z L, Lin S L, Li H M, Lu S P, Guo L, Tang S. CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus[J]. Frontiers in Plant Science, 2022, 13:848723.doi: 10.3389/fpls.2022.848723.
|
[32] |
赵福永, 王津. 一种海甘蓝突变基因CaFAE1-3及其在合成芥酸中的应用:CN116555299A[P]. 2023-08-08
|
|
Zhao F Y, Wang J. A mutated gene of CaFAE1-3 in Crambe abyssinica and its application in the synthesis of erucic acid[P]. 2023-08-08
|