[1] |
|
|
Zhang Y Z, Chen Q F. Present situation and prospect of buckwheat research[J]. Seed, 2004, 23(3):11-13.
|
[2] |
Tomotake H, Kayashita J, Kato N. Hypolipidemic activity of common( Fagopyrum esculentum Moench)and Tartary ( Fagopyrum tataricum Gaertn.)buckwheat[J]. Journal of the Science of Food and Agriculture, 2015, 95(10):1963-1967.doi: 10.1002/jsfa.6981.
|
[3] |
Giménez-Bastida J A, Zieliński H. Buckwheat as a functional food and its effects on health[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36):7896-7913.doi: 10.1021/acs.jafc.5b02498.
pmid: 26270637
|
[4] |
|
|
Deng L Q, Huang L, Zhang Y Z. The research to total flavonoid and soluble sugar contents and antioxidant activity in Fagopyrum esculentum sprouts[J]. Journal of Guizhou University of Engineering Science, 2021, 39(3):68-73.
|
[5] |
Noreen S, Rizwan B, Khan M, Farooq S. Health benefits of buckwheat( Fagopyrum esculentum),potential remedy for diseases,rare to cancer:a mini review[J]. Infectious Disorders Drug Targets, 2021, 21(6):e170721189478.doi: 10.2174/1871526520999201224122605.
|
[6] |
李春花, 加央多拉, 田娟, 孙墨可, 王春龙, 董玉迪, 郭来春, 魏黎明, 孙连池, 任长忠. 自交可育红花甜荞种质资源创新利用研究[J]. 南方农业学报, 2021, 52(10):2751-2757.doi: 10.3969/j.issn.2095-1191.2021.10.015.
|
|
Li C H, Jia Y, Tian J, Sun M K, Wang C L, Dong Y D, Guo L C, Wei L M, Sun L C, Ren C Z. Innovation utilization of germplasm resources of self-fertile safflower buckwheat[J]. Journal of Southern Agriculture, 2021, 52(10):2751-2757.
|
[7] |
|
|
Li J L. Character evaluation and genetic diversity analysis of Chinese buckwheat germplasm resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
|
[8] |
Shen Y X, Zhang N, Tian J L, Xin G, Liu L, Sun X Y, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins[J]. Journal of Controlled Release, 2022, 341:285-299.doi: 10.1016/j.jconrel.2021.11.031.
|
[9] |
|
|
Hou Z H, Wang S P, Wei S D, Liu Z X, Fang Z W. Anthocyanin biosynthesis and regulation in plants[J]. Guihaia, 2017, 37(12):1603-1613.
|
[10] |
Iwashina T. Contribution to flower colors of flavonoids including anthocyanins:a review[J]. Natural Product Communications, 2015, 10(3):529-544.doi: 10.1177/1934578x1501000335.
pmid: 25924543
|
[11] |
Ye S H, Hua S J, Ma T T, Ma X W, Chen Y P, Wu L M, Zhao L, Yi B, Ma C Z, Tu J X, Shen J X, Fu T D, Wen J. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers[J]. Journal of Experimental Botany, 2022, 73(19):6630-6645.doi: 10.1093/jxb/erac312.
|
[12] |
Reverté S, Retana J, Gómez J M, Bosch J. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators[J]. Annals of Botany, 2016, 118(2):249-257.doi: 10.1093/aob/mcw103.
pmid: 27325897
|
[13] |
Grimes K L, Stuart C M, McCarthy J J, Kaur B, Cantu E J, Forester S C. Enhancing the cancer cell growth inhibitory effects of table grape anthocyanins[J]. Journal of Food Science, 2018, 83(9):2369-2374.doi: 10.1111/1750-3841.14294.
pmid: 30070707
|
[14] |
Liu J Q, Zhou H B, Song L, Yang Z J, Qiu M, Wang J, Shi S L. Anthocyanins:promising natural products with diverse pharmacological activities[J]. Molecules, 2021, 26(13):3807.doi: 10.3390/molecules26133807.
|
[15] |
Ngamsamer C, Sirivarasai J, Sutjarit N. The benefits of anthocyanins against obesity-induced inflammation[J]. Biomolecules, 2022, 12(6):852.doi: 10.3390/biom12060852.
|
[16] |
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins:a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases[J]. Molecules, 2020, 25(17):3809.doi: 10.3390/molecules25173809.
|
[17] |
|
|
Zhao D Y. Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway[J]. Journal of Tropical Biology, 2012, 3(1):92-98.
|
[18] |
Shi M Z, Xie D Y. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana[J]. Recent Patents on Biotechnology, 2014, 8(1):47-60.doi: 10.2174/1872208307666131218123538.
|
[19] |
|
|
Wang Z H, Yu C, Wu Y Y. Progress on anthocyanin biosynthesis in grape[J]. Biotechnology Bulletin, 2012(9):1-7.
|
[20] |
Peniche-Pavía H A, Guzmán T J, Magaña-Cerino J M, Gurrola-Díaz C M,, Guzmán. Guzmán.Maize flavonoid biosynthesis,regulation,and human health relevance:a review[J]. Molecules, 2022, 27(16):5166.doi: 10.3390/molecules27165166.
|
[21] |
Ahmad Khan I, Cao K, Guo J, Li Y, Wang Q, Yang X W, Wu J L, Fang W C, Wang L R. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower[J]. Plant Science, 2022, 316:111151.doi: 10.1016/j.plantsci.2021.111151.
|
[22] |
|
|
Yi X J. Cloning and expression analysis of genes involved in dendrobium flavonoids biosynthesis based on RNA-seq[D]. Shanghai: Shanghai Normal University, 2016.
|
[23] |
Gachon C M M, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases:the emerging functional analysis[J]. Trends in Plant Science, 2005, 10(11):542-549.doi: 10.1016/j.tplants.2005.09.007.
|
[24] |
|
[25] |
Togami J, Okuhara H, Nakamura N, Ishiguro K, Hirose C, Ochiai M, Fukui Y, Yamaguchi M A, Tanaka Y. Isolation of cDNAs encoding tetrahydroxychalcone 2'-glucosyltransferase activity from carnation,cyclamen,and catharanthus[J]. Plant Biotechnology, 2011, 28(2):231-238.doi: 10.5511/plantbiotechnology.11.0106b.
|
[26] |
Akere A, Chen S H, Liu X H, Chen Y E, Dantu S C, Pandini A, Bhowmik D, Haider S. Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases[J]. The Biochemical Journal, 2020, 477(15):2791-2805.doi: 10.1042/BCJ20200477.
|
[27] |
|
|
Lu S W, Zheng X A, Wang J Y, Fang J G. Research progress on the metabolism of flavonoids in grape[J]. Acta Horticulturae Sinica, 2021, 48(12):2506-2524.
doi: 10.16420/j.issn.0513-353x.2021-0558
|
[28] |
|
|
Yao Y, Gu J J, Sun C, Shen G A, Guo B L. Advances in plant flavonoids UDP-glycosyltransferase[J]. Biotechnology Bulletin, 2022, 38(12):47-57.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0236
|
[29] |
|
|
Wang L J, Zhao J L, Yang J, Huang J, Chen Q F, Deng J. Bioinformatics analysis of COP1 gene in Tartary buckwheat and its involvement in anthocyanin synthesis[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9):1977-1985.
|
[30] |
|
|
Chen X, Tong Z, Wang Y, Zhu Q L, Song Y Y, Nie Z K, Yang R L. Research progress of the health functions of anthocyanin and its stable maintenance technology[J]. Farm Products Processing, 2021(11):57-60,65.
|
[31] |
Dai L H, Liu C, Zhu Y M, Zhang J S, Men Y, Zeng Y, Sun Y X. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii[J]. Plant and Cell Physiology, 2015, 56(6):1172-1182.doi: 10.1093/pcp/pcv043.
|
[32] |
Zhou J, Li C L, Gao F, Luo X P, Li Q Q, Zhao H X, Yao H P, Chen H, Wang A H, Wu Q. Characterization of three glucosyltransferase genes in Tartary buckwheat and their expression after cold stress[J]. Journal of Agricultural and Food Chemistry, 2016, 64(37):6930-6938.doi: 10.1021/acs.jafc.6b02064.
pmid: 27571449
|
[33] |
Sun W, Sun S Y, Xu H, Wang Y H, Chen Y R, Xu X R, Yi Y, Ju Z G. Characterization of two key flavonoid 3-O-glycosyltransferases involved in the formation of flower color in Rhododendron delavayi[J]. Frontiers in Plant Science, 2022, 13:863482.doi: 10.3389/fpls.2022.863482.
|
[34] |
Chen W F, Zhang M X, Zhang G J, Li P M, Ma F W. Differential regulation of anthocyanin synthesis in apple peel under different sunlight intensities[J]. International Journal of Molecular Sciences, 2019, 20(23):6060.doi: 10.3390/ijms20236060.
|
[35] |
Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Two different mutations are involved in the formation of white-flowered gentian plants[J]. Plant Science, 2005, 169(5):949-958.doi: 10.1016/j.plantsci.2005.06.013.
|
[36] |
Deng J, Su M Y, Zhang X Y, Liu X L, Damaris R N, Lü S Y, Yang P F. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in lotus( Nelumbo nucifera)[J]. Plant Physiology and Biochemistry, 2023, 198:107675.doi: 10.1016/j.plaphy.2023.107675.
|
[37] |
Sun W, Liang L J, Meng X Y, Li Y Q, Gao F Z, Liu X X, Wang S C, Gao X, Wang L. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida[J]. Frontiers in Plant Science, 2016, 7:410.doi: 10.3389/fpls.2016.00410.
|
[38] |
Kovinich N, Saleem A, Arnason J T, Miki B. Functional characterization of a UDP-glucose:flavonoid 3-O-glucosyltransferase from the seed coat of black soybean( Glycine max(L.)Merr.)[J]. Phytochemistry, 2010, 71(11/12):1253-1263.doi: 10.1016/j.phytochem.2010.05.009.
|