[1] |
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen H T, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity[J]. Journal of Experimental Botany, 2020, 71(13):3780-3802.doi: 10.1093/jxb/eraa034.
pmid: 31970395
|
[2] |
Huang J, Zhang F M, Xue Y, Lin J. Recent changes of rice heat stress in Jiangxi Province,Southeast China[J]. International Journal of Biometeorology, 2017, 61(4):623-633.doi: 10.1007/s00484-016-1239-3.
pmid: 27577031
|
[3] |
|
|
Yang J Y, Huo Z G, Wang P J, Wu D R. Dynamic identification of double-early rice heat and its spatiotemporal characteristics in Jiangxi Province,China[J]. Chinese Journal of Applied Ecology, 2020, 31(1):199-207.
|
[4] |
Xu Y F, Chu C C, Yao S G. The impact of high-temperature stress on rice:Challenges and solutions[J]. The Crop Journal, 2021, 9(5):963-976.doi: 10.1016/j.cj.2021.02.011.
URL
|
[5] |
杨雲雲, 陈鑫, 陈启洲, 卢芳, 徐晨, 杨洪涛, 苏佩佩, 刘晓龙. 脱落酸对水稻种子萌发期耐高温胁迫的诱抗效应[J]. 华北农学报, 2021, 36(3):185-194.doi: 10.7668/hbnxb.20191968.
|
|
Yang Y Y, Chen X, Chen Q Z, Lu F, Xu C, Yang H T, Su P P, Liu X L. Priming effects of abscisic acid on high temperature stress tolerance in rice at seed germination stage[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3):185-194.
doi: 10.7668/hbnxb.20191968
|
[6] |
Liu X L, Ji P, Yang H T, Jiang C J, Liang Z W, Chen Q Z, Lu F, Chen X, Yang Y Y, Zhang X B. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation, 2022, 98(1):23-38.doi: 10.1007/s10725-022-00828-7.
|
[7] |
|
|
Zhang G L, Zhang S T, Wang L, Xiao Y H, Tang W B, Chen G H, Chen L Y. Effects of high temperature at different times during the heading and filling periods on rice quality[J]. Scientia Agricultura Sinica, 2013, 46(14):2869-2879.
|
[8] |
Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155:718-733.doi: 10.1016/j.envexpbot.2018.08.021.
URL
|
[9] |
刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5):596-610.doi: 10.11983/CBB22022.
|
|
Liu X L, Ji P, Yang H T, Ding Y D, Fu J L, Liang J X, Yu C C. Priming effect of abscisic acid on high temperature stress during rice heading-flowering stage[J]. Chinese Bulletin of Botany, 2022, 57(5):596-610.
|
[10] |
Zhang H, Liu X L, Zhang R X, Yuan H Y, Wang M M, Yang H Y, Ma H Y, Liu D, Jiang C J, Liang Z W. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice ( Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8:1580.doi: 10.3389/fpls.2017.01580.
pmid: 28943882
|
[11] |
Liu X L, Xu C, Yang H T, Su P P, Shao Q, Chen N, Lin L N, Zhang Z A, Wang H J. Root architectural and physiological responses in contrasting rice genotypes to saline-alkaline stress[J]. International Journal of Agriculture and Biology, 2021, 26:401-410.doi: 10.17957/IJAB/15.1849.
|
[12] |
Suriyasak C, Harano K, Tanamachi K, Matsuo K, Tamada A, Iwaya-Inoue M, Ishibashi Y. Reactive oxygen species induced by heat stress during grain filling of rice ( Oryza sativa L.) are involved in occurrence of grain chalkiness[J]. Journal of Plant Physiology, 2017, 216:52-57.doi: 10.1016/j.jplph.2017.05.015.
URL
|
[13] |
Wang W, Chen D D, Zhang X P, Liu D, Cheng Y Y, Shen F F. Role of plant respiratory burst oxidase homologs in stress responses[J]. Free Radical Research, 2018, 52(8):826-839.doi: 10.1080/10715762.2018.1473572.
pmid: 29732902
|
[14] |
Liu M M, Yu H Y, Ouyang B, Shi C M, Demidchik V, Hao Z F, Yu M, Shabala S. NADPH oxidases and the evolution of plant salinity tolerance[J]. Plant Cell and Environment, 2020, 43(12):2957-2968.doi: 10.1111/pce.13907.
URL
|
[15] |
Liu J, Zhou J, Xing D. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity[J]. PLoS One, 2012, 7(3):e33817.doi: 10.1371/journal.pone.0033817.
URL
|
[16] |
Wang G F, Li W Q, Li W Y, Wu G L, Zhou C Y, Chen K M. Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions[J]. International Journal of Molecular Sciences, 2013, 14(5):9440-9458.doi: 10.3390/ijms14059440.
URL
|
[17] |
Yoshie Y, Goto K, Takai R, Iwano M, Takayama S, Isogai A, Che F S. Function of the rice gp91 phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses[J]. Plant Biotechnology, 2005, 22(2):127-135.doi: 10.5511/plantbiotechnology.22.127.
URL
|
[18] |
Wang X, Zhang M M, Wang Y J, Gao Y T, Li R, Wang G F, Li W Q, Liu W T, Chen K M. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice[J]. Physiologia Plantarum, 2016, 156(4):421-443.doi: 10.1111/ppl.12389.
URL
|
[19] |
Shi Y, Chang Y L, Wu H T, Shalmani A, Liu W T, Li W Q, Xu J W, Chen K M. OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice[J]. Plant Cell Reports, 2020, 39(12):1767-1784.doi: 10.1007/s00299-020-02603-2.
|
[20] |
Zhang D P, Chen L, Li D H, Lü B, Chen Y, Chen J G, Yan X J, Liang J S. OsRACK1 is involved in abscisic acid-and H 2O 2-mediated signaling to regulate seed germination in rice ( Oryza sativa,L.)[J]. PLoS One, 2014, 9(5):e97120.doi: 10.1371/journal.pone.0097120.
URL
|
[21] |
Miyake Y, Takahashi E. Effect of silicon on the growth of solution-cultured cucumber plant[J]. Soil Science and Plant Nutrition, 1983, 29(1):71-83.doi: 10.1080/00380768.1983.10432407.
URL
|
[22] |
Shi P H, Tang L, Wang L H, Sun T, Liu L L, Cao W X, Zhu Y. Post-heading heat stress in rice of South China during 1981-2010[J]. PLoS One, 2015, 10(6):e0130642.doi: 10.1371/journal.pone.0130642.
URL
|
[23] |
|
|
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations,activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108[J]. Chinese Journal of Rice Science, 2019, 33(1):57-67.
|
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[25] |
Zhao Q, Zhou L J, Liu J C, Du X X, Asad M A U, Huang F D, Pan G, Cheng F M. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122:90-101.doi: 10.1016/j.plaphy.2017.11.009.
pmid: 29202329
|
[26] |
|
|
Zhang G L, Zhang S T, Xiao L T, Tang W B, Xiao Y H, Chen L Y. Effect of high temperature stress on physiological characteristics of anther,pollen and stigma of rice during heading-flowering stage[J]. Chinese Journal of Rice Science, 2014, 28(2):155-166.
|
[27] |
Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F. Redox strategies for crop improvement[J]. Antioxidants and Redox Signaling, 2015, 23(14):1186-1205.doi: 10.1089/ars.2014.6033.
|
[28] |
Guan Q J, Liao X, He M L, Li X F, Wang Z Y, Ma H Y, Yu S, Liu S K. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO 3 stress[J]. PLoS One, 2017, 12(10):e0186052.doi: 10.1371/journal.pone.0186052.
URL
|
[29] |
Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa N K, Tsutsumi N, Yoshioka H, Nakazono M. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions[J]. The Plant Cell, 2017, 29(4):775-790.doi: 10.1105/tpc.16.00976.
pmid: 28351990
|