[1] |
doi: 10.3724/SP.J.1006.2010.01425
|
|
Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China:Current status and perspectives[J]. Acta Agronomica Sinica, 2010, 36(9):1425-1430.
|
[2] |
doi: 10.2135/cropsci1993.0011183X003300040003x
URL
|
[3] |
Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199. doi: 10.1093/genetics/121.1.185.
doi: 10.1093/genetics/121.1.185
pmid: 2563713
|
[4] |
doi: 10.1093/genetics/136.4.1457
pmid: 8013918
|
[5] |
Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics, 1990, 124(3):743-756. doi: 10.1093/genetics/124.3.743.
doi: 10.1093/genetics/124.3.743
pmid: 1968875
|
[6] |
Bernardo R. Molecular markers and selection for complex traits in plants:learning from the last 20 years[J]. Crop Science, 2008, 48(5):1649-1664. doi: 10.2135/cropsci2008.03.0131.
doi: 10.2135/cropsci2008.03.0131
URL
|
[7] |
Ashraf M, Foolad M R. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection[J]. Plant Breeding, 2013, 132(1):10-20. doi: 10.1111/pbr.12000.
doi: 10.1111/pbr.12000
URL
|
[8] |
Morrell P L, Buckler E S, Ross-Ibarra J. Crop genomics:Advances and applications[J]. Nature Reviews Genetics, 2011, 13(2):85-96. doi: 10.1038/nrg3097.
doi: 10.1038/nrg3097
pmid: 22207165
|
[9] |
Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49(1):1-12. doi: 10.2135/cropsci2008.08.0512.
doi: 10.2135/cropsci2008.08.0512
URL
|
[10] |
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829. doi: 10.1093/genetics/157.4.1819.
doi: 10.1093/genetics/157.4.1819
pmid: 11290733
|
[11] |
Voss-Fels K P, Cooper M, Hayes B J. Accelerating crop genetic gains with genomic selection[J]. Theoretical and Applied Genetics, 2019, 132(3):669-686. doi: 10.1007/s00122-018-3270-8.
doi: 10.1007/s00122-018-3270-8
pmid: 30569365
|
[12] |
doi: 10.1111/j.1439-0388.2007.00702.x
pmid: 18076469
|
[13] |
Schaeffer L R. Strategy for applying genome-wide selection in dairy cattle[J]. Journal of Animal Breeding and Genetics, 2006, 123(4):218-223. doi: 10.1111/j.1439-0388.2006.00595.x.
doi: 10.1111/j.1439-0388.2006.00595.x
pmid: 16882088
|
[14] |
Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. Invited review:Genomic selection in dairy cattle:Progress and challenges[J]. Journal of Dairy Science, 2009, 92(2):433-443. doi: 10.3168/jds.2008-1646.
doi: 10.3168/jds.2008-1646
pmid: 19164653
|
[15] |
Tribout T, Larzul C, Phocas F. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme[J]. Genetics,Selection,Evolution, 2013, 45(1):40. doi: 10.1186/1297-9686-45-40.
doi: 10.1186/1297-9686-45-40
|
[16] |
Raoul J, Swan A A, Elsen J M. Using a very low-density SNP panel for genomic selection in a breeding program for sheep[J]. Genetics,Selection,Evolution, 2017, 49(1):76. doi: 10.1186/s12711-017-0351-0.
doi: 10.1186/s12711-017-0351-0
|
[17] |
Zhao Y S, Li Z, Liu G Z, Jiang Y, Maurer H P, Würschum T, Mock H P, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin C F H, Reif J C. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding[J]. PNAS, 2015, 112(51):15624-15629. doi: 10.1073/pnas.1514547112.
doi: 10.1073/pnas.1514547112
pmid: 26663911
|
[18] |
Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize[J]. Nature Genetics, 2012, 44(2):217-220. doi: 10.1038/ng.1033.
doi: 10.1038/ng.1033
pmid: 22246502
|
[19] |
Xu S Z, Zhu D, Zhang Q F. Predicting hybrid performance in rice using genomic best linear unbiased prediction[J]. PNAS, 2014, 111(34):12456-12461. doi: 10.1073/pnas.1413750111.
doi: 10.1073/pnas.1413750111
pmid: 25114224
|
[20] |
Habier D, Fernando R L, Garrick D J. Genomic BLUP decoded:A look into the black box of genomic prediction[J]. Genetics, 2013, 194(3):597-607. doi: 10.1534/genetics.113.152207.
doi: 10.1534/genetics.113.152207
pmid: 23640517
|
[21] |
Legarra A, Christensen O F, Aguilar I, Misztal I. Single step,a general approach for genomic selection[J]. Livestock Science, 2014, 166:54-65. doi: 10.1016/j.livsci.2014.04.029.
doi: 10.1016/j.livsci.2014.04.029
URL
|
[22] |
Liu H L, Chen G B. A fast genomic selection approach for large genomic data[J]. Theoretical and Applied Genetics, 2017, 130(6):1277-1284. doi: 10.1007/s00122-017-2887-3.
doi: 10.1007/s00122-017-2887-3
pmid: 28389770
|
[23] |
Habier D, Fernando R L, Kizilkaya K, Garrick D J. Extension of the bayesian alphabet for genomic selection[J]. BMC Bioinformatics, 2011, 12:186. doi: 10.1186/1471-2105-12-186.
doi: 10.1186/1471-2105-12-186
pmid: 21605355
|
[24] |
Ogutu J O, Piepho H P, Schulz-Streeck T. A comparison of random forests,boosting and support vector machines for genomic selection[J]. BMC Proceedings, 2011, 5(S3):S11. doi: 10.1186/1753-6561-5-S3-S11.
doi: 10.1186/1753-6561-5-S3-S11
|
[25] |
Bayer P E, Petereit J, Danilevicz M F, Anderson R, Batley J, Edwards D. The application of pangenomics and machine learning in genomic selection in plants[J]. The Plant Genome, 2021, 14(3):e20112. doi: 10.1002/tpg2.20112.
doi: 10.1002/tpg2.20112
|
[26] |
Daetwyler H D, Pong-Wong R, Villanueva B, Woolliams J A. The impact of genetic architecture on genome-wide evaluation methods[J]. Genetics, 2010, 185(3):1021-1031. doi: 10.1534/genetics.110.116855.
doi: 10.1534/genetics.110.116855
pmid: 20407128
|
[27] |
Jiang S Q, Cheng Q, Yan J, Fu R, Wang X F. Genome optimization for improvement of maize breeding[J]. Theoretical and Applied Genetics, 2020, 133(5):1491-1502. doi: 10.1007/s00122-019-03493-z.
doi: 10.1007/s00122-019-03493-z
pmid: 31811314
|
[28] |
Karaman E, Cheng H, Firat M Z, Garrick D J, Fernando R L. An upper bound for accuracy of prediction using GBLUP[J]. PLoS One, 2016, 11(8):e0161054. doi: 10.1371/journal.pone.0161054.
doi: 10.1371/journal.pone.0161054
|
[29] |
Liu H L, Chen G B. A new genomic prediction method with additive-dominance effects in the least-squares framework[J]. Heredity, 2018, 121(2):196-204. doi: 10.1038/s41437-018-0099-5.
doi: 10.1038/s41437-018-0099-5
pmid: 29925888
|
[30] |
Norman A, Taylor J, Edwards J, Kuchel H. Optimising genomic selection in wheat:Effect of marker density,population size and population structure on prediction accuracy[J]. G3 Genes|Genomes|Genetics, 2018, 8(9):2889-2899. doi: 10.1534/g3.118.200311.
doi: 10.1534/g3.118.200311
|
[31] |
Zhao Y S, Gowda M, Liu W X, Würschum T, Maurer H P, Longin F H, Ranc N, Reif J C. Accuracy of genomic selection in European maize elite breeding populations[J]. Theoretical and Applied Genetics, 2012, 124(4):769-776. doi: 10.1007/s00122-011-1745-y.
doi: 10.1007/s00122-011-1745-y
pmid: 22075809
|
[32] |
Liu X G, Wang H W, Wang H, Guo Z F, Xu X J, Liu J C, Wang S H, Li W X, Zou C, Prasanna B M, Olsen M S, Huang C L, Xu Y B. Factors affecting genomic selection revealed by empirical evidence in maize[J]. The Crop Journal, 2018, 6(4):341-352. doi: 10.1016/j.cj.2018.03.005.
doi: 10.1016/j.cj.2018.03.005
URL
|
[33] |
Bernardo R, Yu J M. Prospects for genomewide selection for quantitative traits in maize[J]. Crop Science, 2007, 47(3):1082-1090. doi: 10.2135/cropsci2006.11.0690.
doi: 10.2135/cropsci2006.11.0690
URL
|
[34] |
Romero Navarro J A, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado H V, Vidal V, Ortega A, Banda A E, Montiel N O G, Ortiz-Monasterio I, Vicente F S, Espinoza A G, Atlin G, Wenzl P, Hearne S, Buckler E S. A study of allelic diversity underlying flowering-time adaptation in maize landraces[J]. Nature Genetics, 2017, 49(3):476-480. doi: 10.1038/ng.3784.
doi: 10.1038/ng.3784
pmid: 28166212
|
[35] |
Atanda S A, Olsen M, Burgue o J, Crossa J, Dzidzienyo D, Beyene Y, Gowda M, Dreher K, Zhang X C, Prasanna B M, Tongoona P, Danquah E Y, Olaoye G, Robbins K R. Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program[J]. Theoretical and Applied Genetics, 2021, 134(1):279-294. doi: 10.1007/s00122-020-03696-9.
doi: 10.1007/s00122-020-03696-9
pmid: 33037897
|
[36] |
Cooper M, Technow F, Messina C, Gho C, Totir L R. Use of crop growth models with whole-genome prediction:application to a maize multienvironment trial[J]. Crop Science, 2016, 56(5):2141-2156. doi: 10.2135/cropsci2015.08.0512.
doi: 10.2135/cropsci2015.08.0512
URL
|
[37] |
Jacobson A, Lian L, Zhong S Q, Bernardo R. Minimal loss of genetic diversity after genomewide selection within biparental maize populations[J]. Crop Science, 2015, 55(2):783-789. doi: 10.2135/cropsci2014.10.0744.
doi: 10.2135/cropsci2014.10.0744
URL
|
[38] |
Guo Z G, Tucker D M, Lu J W, Kishore V, Gay G. Evaluation of genome-wide selection efficiency in maize nested association mapping populations[J]. Theoretical and Applied Genetics, 2012, 124(2):261-275. doi: 10.1007/s00122-011-1702-9.
doi: 10.1007/s00122-011-1702-9
pmid: 21938474
|
[39] |
Zhang X, Pérez-Rodríguez P, Semagn K, Beyene Y, Babu R, López-Cruz M A, San Vicente F, Olsen M, Buckler E, Jannink J L, Prasanna B M, Crossa J. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs[J]. Heredity, 2015, 114(3):291-299. doi: 10.1038/hdy.2014.99.
doi: 10.1038/hdy.2014.99
pmid: 25407079
|
[40] |
Fritsche-Neto R, Akdemir D, Jannink J L. Accuracy of genomic selection to predict maize single-crosses obtained through different mating designs[J]. Theoretical and Applied Genetics, 2018, 131(5):1153-1162. doi: 10.1007/s00122-018-3068-8.
doi: 10.1007/s00122-018-3068-8
pmid: 29445844
|
[41] |
Guo T T, Li H H, Yan J B, Tang J H, Li J S, Zhang Z W, Zhang L Y, Wang J K. Performance prediction of F1 hybrids between recombinant inbred lines derived from two elite maize inbred lines[J]. Theoretical and Applied Genetics, 2013, 126(1):189-201. doi: 10.1007/s00122-012-1973-9.
doi: 10.1007/s00122-012-1973-9
pmid: 22972201
|
[42] |
Liu L, Du Y F, Huo D A, Wang M, Shen X M, Yue B, Qiu F Z, Zheng Y L, Yan J B, Zhang Z X. Genetic architecture of maize kernel row number and whole genome prediction[J]. Theoretical and Applied Genetics, 2015, 128(11):2243-2254. doi: 10.1007/s00122-015-2581-2.
doi: 10.1007/s00122-015-2581-2
pmid: 26188589
|
[43] |
Li G L, Dong Y, Zhao Y S, Tian X K, Würschum T, Xue J Q, Chen S J, Reif J C, Xu S T, Liu W X. Genome-wide prediction in a hybrid maize population adapted to Northwest China[J]. The Crop Journal, 2020, 8(5):830-842. doi: 10.1016/j.cj.2020.04.006.
doi: 10.1016/j.cj.2020.04.006
URL
|
[44] |
Liu X G, Wang H W, Hu X J, Li K, Liu Z F, Wu Y J, Huang C L. Improving genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize[J]. Frontiers in Plant Science, 2019, 10:1129. doi: 10.3389/fpls.2019.01129.
doi: 10.3389/fpls.2019.01129
pmid: 31620155
|
[45] |
Xiao Y J, Jiang S Q, Cheng Q, Wang X Q, Yan J, Zhang R Y, Qiao F, Ma C, Luo J Y, Li W Q, Liu H J, Yang W Y, Song W H, Meng Y J, Warburton M L, Zhao J R, Wang X F, Yan J B. The genetic mechanism of heterosis utilization in maize improvement[J]. Genome Biology, 2021, 22(1):148. doi: 10.1186/s13059-021-02370-7.
doi: 10.1186/s13059-021-02370-7
pmid: 33971930
|
[46] |
Xu C, Zhang H W, Sun J H, Guo Z F, Zou C, Li W X, Xie C X, Huang C L, Xu R N, Liao H, Wang J X, Xu X J, Wang S H, Xu Y B. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize[J]. Theoretical and Applied Genetics, 2018, 131(8):1699-1714. doi: 10.1007/s00122-018-3108-4.
doi: 10.1007/s00122-018-3108-4
pmid: 29754325
|
[47] |
Guo Z F, Zou C, Liu X G, Wang S H, Li W X, Jeffers D, Fan X M, Xu M L, Xu Y B. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS,bulked sample analysis,and genomic prediction[J]. Plant Disease, 2020, 104(6):1725-1735. doi: 10.1094/PDIS-07-19-1552-RE.
doi: 10.1094/PDIS-07-19-1552-RE
URL
|
[48] |
Yong H J, Wang N, Yang X J, Zhang F Y, Tang J, Yang Z Y, Zhao X Z, Li Y, Li M S, Zhang D G, Hao Z F, Weng J F, Han J N, Li H H, Li X H. Genomic selection to introgress exotic maize germplasm into elite maize in China to improve kernel dehydration rate[J]. Euphytica, 2021, 217(8): 1-14. doi: 10.1007/s10681-021-02899-5.
doi: 10.1007/s10681-021-02899-5
URL
|
[49] |
doi: 10.3724/SP.J.1006.2022.12062
|
|
Yang J C, Li C Q, Jiang Y. Contents and compositions of amino acids in rice grains and their regulation:A review[J]. Acta Agronomica Sinica, 2022, 48(5):1037-1050.
doi: 10.3724/SP.J.1006.2022.12062
|
[50] |
Xu S Z. Genetic mapping and genomic selection using recombination breakpoint data[J]. Genetics, 2013, 195(3):1103-1115. doi: 10.1534/genetics.113.155309.
doi: 10.1534/genetics.113.155309
pmid: 23979575
|
[51] |
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J L, McCouch S R. Genomic selection and association mapping in rice( Oryza sativa):Effect of trait genetic architecture,training population composition,marker number and statistical model on accuracy of rice genomic selection in elite,tropical rice breeding lines[J]. PLoS Genetics, 2015, 11(2):e1004982. doi: 10.1371/journal.pgen.1004982.
doi: 10.1371/journal.pgen.1004982
|
[52] |
Huang M, Balimponya E G, Mgonja E M, McHale L K, Luzi-Kihupi A, Wang G L, Sneller C H. Use of genomic selection in breeding rice( Oryza sativa L.)for resistance to rice blast( Magnaporthe oryzae)[J]. Molecular Breeding, 2019, 39(8): 1-16. doi: 10.1007/s11032-019-1023-2.
doi: 10.1007/s11032-019-1023-2
URL
|
[53] |
Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H. Exploring the areas of applicability of whole-genome prediction methods for Asian rice( Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2015, 128(1):41-53. doi: 10.1007/s00122-014-2411-y.
doi: 10.1007/s00122-014-2411-y
pmid: 25341369
|
[54] |
Grenier C, Cao T V, Ospina Y, Quintero C, Châtel M H, Tohme J, Courtois B, Ahmadi N. Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding[J]. PLoS One, 2015, 10(8):e0136594. doi: 10.1371/journal.pone.0136594.
doi: 10.1371/journal.pone.0136594
|
[55] |
Bhandari A, Bartholom J, Cao-Hamadoun T V, Kumari N, Frouin J, Kumar A, Ahmadi N. Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice[J]. PLoS One, 2019, 14(5):e0208871. doi: 10.1371/journal.pone.0208871.
doi: 10.1371/journal.pone.0208871
|
[56] |
Frouin J, Labeyrie A, Boisnard A, Sacchi G A, Ahmadi N. Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains[J]. PLoS One, 2019, 14(6):e0217516. doi: 10.1371/journal.pone.0217516.
doi: 10.1371/journal.pone.0217516
|
[57] |
Grinberg N F, Orhobor O I, King R D. An evaluation of machine-learning for predicting phenotype:Studies in yeast,rice,and wheat[J]. Machine Learning, 2020, 109(2):251-277. doi: 10.1007/s10994-019-05848-5.
doi: 10.1007/s10994-019-05848-5
URL
|
[58] |
Júnior O P M, Breseghello F, Duarte J B, Coelho A S G, Borba T C O, Aguiar J T, Neves P C F, Morais O P. Assessing prediction models for different traits in a rice population derived from a recurrent selection program[J]. Crop Science, 2018, 58(6):2347-2359. doi: 10.2135/cropsci2018.02.0087.
doi: 10.2135/cropsci2018.02.0087
URL
|
[59] |
doi: 10.3724/SP.J.1006.2019.82057
|
|
Ji L, Shen H F, Xu C C, Chen Z D, Fang F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis[J]. Acta Agronomica Sinica, 2019, 45(7):982-992.
doi: 10.3724/SP.J.1006.2019.82057
|
[60] |
doi: 10.11869/j.issn.100-8551.2018.08.1603
|
|
Cheng H H, Yi Z B, Zeng Y J, Zheng H L, Shang Q Y. Lodging resistance of super hybrid rice at different yield levels and its response to fertilization[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8):1603-1610.
|
[61] |
Cui Y R, Li R D, Li G W, Zhang F, Zhu T T, Zhang Q F, Ali J, Li Z K, Xu S Z. Hybrid breeding of rice via genomic selection[J]. Plant Biotechnology Journal, 2020, 18(1):57-67. doi: 10.1111/pbi.13170.
doi: 10.1111/pbi.13170
pmid: 31124256
|
[62] |
Xu S Z, Xu Y, Gong L, Zhang Q F. Metabolomic prediction of yield in hybrid rice[J]. The Plant Journal, 2016, 88(2):219-227. doi: 10.1111/tpj.13242.
doi: 10.1111/tpj.13242
pmid: 27311694
|
[63] |
Xiao N, Pan C H, Li Y H, Wu Y Y, Cai Y, Lu Y, Wang R Y, Yu L, Shi W, Kang H X, Zhu Z B, Huang N S, Zhang X X, Chen Z C, Liu J J, Yang Z F, Ning Y S, Li A H. Genomic insight into balancing high yield,good quality,and blast resistance of japonica rice[J]. Genome Biology, 2021, 22:283. doi: 10.1186/s13059-021-02488-8.
doi: 10.1186/s13059-021-02488-8
pmid: 34615543
|
[64] |
邓梅, 何员江, 苟璐璐, 姚方杰, 李健, 张雪梅, 龙黎, 马建, 江千涛, 刘亚西, 魏育明, 陈国跃. 小麦骨干亲本繁6产量相关性状关键基因组区段的遗传效应[J]. 作物学报, 2018, 44(5):706-715. doi: 10.3724/SP.J.1006.2018.00706.
doi: 10.3724/SP.J.1006.2018.00706
|
|
Deng M, He Y J, Gou L L, Yao F J, Li J, Zhang X M, Long L, Ma J, Jiang Q T, Liu Y X, Wei Y M, Chen G Y. Genetic effects of key genomic regions controlling yield-related traits in wheat founder parent Fan 6[J]. Acta Agronomica Sinica, 2018, 44(5):706-715.
doi: 10.3724/SP.J.1006.2018.00706
URL
|
[65] |
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J M. Predicting quantitative traits with regression models for dense molecular markers and pedigree[J]. Genetics, 2009, 182(1):375-385. doi: 10.1534/genetics.109.101501.
doi: 10.1534/genetics.109.101501
pmid: 19293140
|
[66] |
Bassi F M, Bentley A R, Charmet G, Ortiz R, Crossa J. Breeding schemes for the implementation of genomic selection in wheat( Triticum spp.)[J]. Plant Science, 2016, 242:23-36. doi: 10.1016/j.plantsci.2015.08.021.
doi: 10.1016/j.plantsci.2015.08.021
URL
|
[67] |
Heffner E L, Jannink J L, Iwata H, Souza E, Sorrells M E. Genomic selection accuracy for grain quality traits in biparental wheat populations[J]. Crop Science, 2011, 51(6):2597-2606. doi: 10.2135/cropsci2011.05.0253.
doi: 10.2135/cropsci2011.05.0253
URL
|
[68] |
Michel S, Löschenberger F, Ametz C, Pachler B, Sparry E, Bürstmayr H. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding[J]. Theoretical and Applied Genetics, 2019, 132(6):1745-1760. doi: 10.1007/s00122-019-03312-5.
doi: 10.1007/s00122-019-03312-5
pmid: 30810763
|
[69] |
Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink J L, Singh R P, Autrique E, de los Campos G. Increased prediction accuracy in wheat breeding trials using a marker×environment interaction genomic selection model[J]. G3 Genes|Genomes|Genetics, 2015, 5(4):569-582. doi: 10.1534/g3.114.016097.
doi: 10.1534/g3.114.016097
|
[70] |
Sandhu K, Patil S S, Pumphrey M, Carter A. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program[J]. The Plant Genome, 2021, 14(3):e20119. doi: 10.1002/tpg2.20119.
doi: 10.1002/tpg2.20119
|
[71] |
Arruda M P, Lipka A E, Brown P J, Krill A M, Thurber C, Brown-Guedira G, Dong Y, Foresman B J, Kolb F L. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat( Triticum aestivum L.)[J]. Molecular Breeding, 2016, 36(7): 1-11. doi: 10.1007/s11032-016-0508-5.
doi: 10.1007/s11032-016-0508-5
URL
|
[72] |
Joukhadar R, Thistlethwaite R, Trethowan R M, Hayden M J, Stangoulis J, Cu S, Daetwyler H D. Genomic selection can accelerate the biofortification of spring wheat[J]. Theoretical and Applied Genetics, 2021, 134(10):3339-3350. doi: 10.1007/s00122-021-03900-4.
doi: 10.1007/s00122-021-03900-4
pmid: 34254178
|
[73] |
Bentley A R, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose G A, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchêne K, Praud S, Greenland A, Balding D, Mackay I J. Applying association mapping and genomic selection to the dissection of key traits in elite European wheat[J]. Theoretical and Applied Genetics, 2014, 127(12):2619-2633. doi: 10.1007/s00122-014-2403-y.
doi: 10.1007/s00122-014-2403-y
pmid: 25273129
|
[74] |
Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, Toledo F H, Govindan V, Mondal S, Kumar U, Bhavani S, Singh P K, Randhawa M S, He X Y, Guzman C, Dreisigacker S, Rouse M N, Jin Y, Pérez-Rodríguez P, Montesinos-López O A, Singh D, Mokhlesur Rahman M, Marza F, Singh R P. Improving grain yield,stress resilience and quality of bread wheat using large-scale genomics[J]. Nature Genetics, 2019, 51(10):1530-1539. doi: 10.1038/s41588-019-0496-6.
doi: 10.1038/s41588-019-0496-6
URL
|
[75] |
Yao J, Zhao H D, Chen X M, Zhang Y, Wang J K. Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat( Triticum aestivum L.)[J]. The Crop Journal, 2018, 6(4):353-365. doi: 10.1016/j.cj.2018.05.003.
doi: 10.1016/j.cj.2018.05.003
URL
|
[76] |
Ali M, Zhang Y, Rasheed A, Wang J K, Zhang L Y. Genomic prediction for grain yield and yield-related traits in Chinese winter wheat[J]. International Journal of Molecular Sciences, 2020, 21(4):1342. doi: 10.3390/ijms21041342.
doi: 10.3390/ijms21041342
URL
|
[77] |
张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒质量全基因组关联分析[J]. 作物学报, 2021, 47(4):650-659. doi: 10.3724/SP.J.1006.2021.04136.
doi: 10.3724/SP.J.1006.2021.04136
|
|
Zhang C, Zhao X Z, Pang C K, Peng M L, Wang X D, Chen F, Zhang W, Chen S, Peng Q, Yi B, Sun C M, Zhang J F, Fu T D. Genome-wide association study of 1000-seed weight in rapeseed(Brassica napus L.)[J]. Acta Agronomica Sinica, 2021, 47(4):650-659.
|
[78] |
吕伟生, 肖富良, 张绍文, 郑伟, 黄天宝, 肖小军, 李亚贞, 吴艳, 韩德鹏, 肖国滨, 张学昆. 种肥播施方式对红壤旱地油菜产量及肥料利用率的影响[J]. 作物学报, 2020, 46(11):1790-1800. doi: 10.3724/SP.J.1006.2020.94203.
doi: 10.3724/SP.J.1006.2020.94203
|
|
Lü W S, Xiao F L, Zhang S W, Zheng W, Huang T B, Xiao X J, Li Y Z, Wu Y, Han D P, Xiao G B, Zhang X K. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed(Brassica napus L.)[J]. Acta Agronomica Sinica, 2020, 46(11):1790-1800.
|
[79] |
秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6):1488-1501. doi: 10.3724/SP.J.1006.2022.14087.
doi: 10.3724/SP.J.1006.2022.14087
|
|
Qin L, Han P P, Chang H B, Gu C M, Huang W, Li Y S, Liao X S, Xie L H, Liao X. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure[J]. Acta Agronomica Sinica, 2022, 48(6):1488-1501.
doi: 10.3724/SP.J.1006.2022.14087
|
[80] |
Würschum T, Abel S, Zhao Y S. Potential of genomic selection in rapeseed( Brassica napus L.)breeding[J]. Plant Breeding, 2014, 133(1):45-51. doi: 10.1111/pbr.12137.
doi: 10.1111/pbr.12137
URL
|
[81] |
Knoch D, Werner C R, Meyer R C, Riewe D, Abbadi A, L cke S, Snowdon R J, Altmann T. Multi-omics-based prediction of hybrid performance in canola[J]. Theoretical and Applied Genetics, 2021, 134(4):1147-1165. doi: 10.1007/s00122-020-03759-x.
doi: 10.1007/s00122-020-03759-x
pmid: 33523261
|
[82] |
Jan H U, Abbadi A, Lücke S, Nichols R A, Snowdon R J. Genomic prediction of testcross performance in canola( Brassica napus)[J]. PLoS One, 2016, 11(1):e0147769. doi: 10.1371/journal.pone.0147769.
doi: 10.1371/journal.pone.0147769
|
[83] |
Werner C R, Qian L W, Voss-Fels K P, Abbadi A, Leckband G, Frisch M, Snowdon R J. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture[J]. Theoretical and Applied Genetics, 2018, 131(2):299-317. doi: 10.1007/s00122-017-3002-5.
doi: 10.1007/s00122-017-3002-5
pmid: 29080901
|
[84] |
Koscielny C B, Gardner S W, Technow F, Duncan R W. Linkage mapping and whole-genome predictions in canola( Brassica napus)subjected to differing temperature treatments[J]. Crop & Pasture Science, 2020, 71(3):229-238. doi: 10.1071/CP19387.
doi: 10.1071/CP19387
|
[85] |
Roy J, Shaikh T M, Mendoza L D R, Hosain S, Chapara V, Rahman M. Genome-wide association mapping and genomic prediction for adult stage sclerotinia stem rot resistance in Brassica napus (L.)under field environments[J]. Scientific Reports, 2021, 11:21773. doi: 10.1038/s41598-021-01272-9.
doi: 10.1038/s41598-021-01272-9
URL
|
[86] |
Fikere M, Barbulescu D M, Malmberg M M, Shi F, Koh J C O, Slater A T, MacLeod I M, Bowman P J, Salisbury P A, Spangenberg G C, Cogan N O I, Daetwyler H D. Genomic prediction using prior quantitative trait loci information reveals a large reservoir of underutilised blackleg resistance in diverse canola( Brassica napus L.)lines[J]. The Plant Genome, 2018, 11(2):170100. doi: 10.3835/plantgenome2017.11.0100.
doi: 10.3835/plantgenome2017.11.0100
|
[87] |
Derbyshire M C, Khentry Y, Severn-Ellis A, Mwape V, Saad N S M, Newman T E, Taiwo A, Regmi R, Buchwaldt L, Denton-Giles M, Batley J, Kamphuis L G. Modeling first order additive×additive epistasis improves accuracy of genomic prediction for Sclerotinia stem rot resistance in canola[J]. The Plant Genome, 2021, 14(2):e20088. doi: 10.1002/tpg2.20088.
doi: 10.1002/tpg2.20088
|
[88] |
Fikere M, Barbulescu D M, Malmberg M M, Maharjan P, Salisbury P A, Kant S, Panozzo J, Norton S, Spangenberg G C, Cogan N O I, Daetwyler H D. Genomic prediction and genetic correlation of agronomic,blackleg disease,and seed quality traits in canola( Brassica napus L.)[J]. Plants, 2020, 9(6):719. doi: 10.3390/plants9060719.
doi: 10.3390/plants9060719
URL
|
[89] |
Li L, Long Y, Zhang L B, Dalton-Morgan J, Batley J, Yu L J, Meng J L, Li M T. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.[J]. PLoS One, 2015, 10(3):e0119425. doi: 10.1371/journal.pone.0119425.
doi: 10.1371/journal.pone.0119425
|
[90] |
Zou J, Zhao Y S, Liu P F, Shi L, Wang X H, Wang M, Meng J L, Reif J C. Seed quality traits can be predicted with high accuracy in Brassica napus using genomic data[J]. PLoS One, 2016, 11(11):e0166624. doi: 10.1371/journal.pone.0166624.
doi: 10.1371/journal.pone.0166624
|
[91] |
Liu P F, Zhao Y S, Liu G Z, Wang M, Hu D D, Hu J, Meng J L, Reif J C, Zou J. Hybrid performance of an immortalized F 2 rapeseed population is driven by additive,dominance,and epistatic effects[J]. Frontiers in Plant Science, 2017, 8:815. doi: 10.3389/fpls.2017.00815.
doi: 10.3389/fpls.2017.00815
URL
|
[92] |
Wang Q, Yan T, Long Z B, Huang L Y, Zhu Y, Xu Y, Chen X Y, Pak H, Li J Q, Wu D Z, Xu Y, Hua S J, Jiang L X. Prediction of heterosis in the recent rapeseed( Brassica napus)polyploid by pairing parental nucleotide sequences[J]. PLoS Genetics, 2021, 17(11):e1009879. doi: 10.1371/journal.pgen.1009879.
doi: 10.1371/journal.pgen.1009879
|
[93] |
Luo Z L, Wang M, Long Y, Huang Y J, Shi L, Zhang C Y, Liu X, Fitt B D L, Xiang J X, Mason A S, Snowdon R J, Liu P F, Meng J L, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits:Seed yield in rapeseed as an example[J]. Theoretical and Applied Genetics, 2017, 130(8):1569-1585. doi: 10.1007/s00122-017-2911-7.
doi: 10.1007/s00122-017-2911-7
URL
|
[94] |
Hu D D, Zhao Y S, Shen J X, He X X, Zhang Y K, Jiang Y, Snowdon R, Meng J L, Reif J C, Zou J. Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus[J]. The Crop Journal, 2021, 9(5):1169-1178. doi: 10.1016/j.cj.2020.11.002.
doi: 10.1016/j.cj.2020.11.002
URL
|
[95] |
Werner C R, Voss-Fels K P, Miller C N, Qian W, Hua W, Guan C Y, Snowdon R J, Qian L. Effective genomic selection in a narrow-genepool crop with low-density markers:Asian rapeseed as an example[J]. The Plant Genome, 2018, 11(2):170084. doi: 10.3835/plantgenome2017.09.0084.
doi: 10.3835/plantgenome2017.09.0084
|
[96] |
Pocrnic I, Lourenco D A L, Masuda Y, Misztal I. Dimensionality of genomic information and performance of the algorithm for proven and young for different livestock species[J]. Genetics,Selection,Evolution, 2016, 48(1):82. doi: 10.1186/s12711-016-0261-6.
doi: 10.1186/s12711-016-0261-6
|
[97] |
Jenko J, Gorjanc G, Cleveland M A, Varshney R K, Whitelaw C B A, Woolliams J A, Hickey J M. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[J]. Genetics,Selection,Evolution, 2015, 47(1):55. doi: 10.1186/s12711-015-0135-3.
doi: 10.1186/s12711-015-0135-3
|
[98] |
Jighly A, Lin Z B, Pembleton L W, Cogan N O I, Spangenberg G C, Hayes B J, Daetwyler H D. Boosting genetic gain in allogamous crops via speed breeding and genomic selection[J]. Frontiers in Plant Science, 2019, 10:1364. doi: 10.3389/fpls.2019.01364.
doi: 10.3389/fpls.2019.01364
URL
|