[1] 张洪生, 赵明, 吴沛波, 翟延举, 姜雯. 种植密度对玉米茎秆和穗部性状的影响[J].玉米科学, 2009, 17(5):130-133.doi:10.13597/j.cnki.maize.science.2009.05.033. Zhang H S, Zhao M, Wu P B, Zhai Y J, Jiang W. Effects of the plant density on the characteristics of maize stem and ear[J]. Journal of Maize Sciences, 2009, 17(5):130-133. [2] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响[J].作物学报, 2016, 42(12):1864-1872.doi:10.3724/SP.J.1006.2016.01864. Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights[J]. Acta Agronomica Sinica, 2016, 42(12):1864-1872. [3] 谷利敏, 乔江方, 张美微, 朱卫红, 黄璐, 代书桃, 董树亭, 刘京宝. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响[J].玉米科学, 2017, 25(5):91-97.doi:10.13597/j.cnki.maize.science.20170515. Gu L M, Qiao J F, Zhang M W, Zhu W H, Huang L, Dai S T, Dong S T, Liu J B. Effect of planting density on stalk characteristics and lodging-resistant capacity of different density-resistant summer maize varieties[J]. Journal of Maize Sciences, 2017, 25(5):91-97. [4] 丰光, 景希强, 李妍妍, 王亮, 黄长玲. 玉米茎秆性状与倒伏性的相关和通径分析[J].华北农学报, 2010, 25(S1):72-74.doi:10.7668/hbnxb.2010.S1.017. Feng G, Jing X Q, Li Y Y, Wang L, Huang C L. Correlation and path analysis of lodging resistance with maize stem characters[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(S1):72-74. [5] 王铁固, 马娟, 张怀胜, 陈士林. 玉米茎粗主基因+多基因遗传模型分析[J].江苏农业学报, 2012, 28(3):467-471.doi:10.3969/j.issn.1000-4440.2012.03.002. Wang T G, Ma J, Zhang H S, Chen S L. Mixed major gene plus polygene inheritance model for stem diameter in maize[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(3):467-471. [6] 徐蔚.玉米茎粗QTL定位与遗传分析[D].雅安:四川农业大学, 2014. Xu W. Corn stem diameter QTL mapping and genetic analysis[D].Ya'an:Sichuan Agricultural University, 2014. [7] Hu H X, Liu W X, Fu Z Y, Homann L, Technow F, Wang H W, Song C L, Li S T, Melchinger A E, Chen S J. QTL mapping of stalk bending strength in a recombinant inbred line maize population[J]. Theoretical and Applied Genetics, 2013, 126(9):2257-2266.doi:10.1007/s00122-013-2132-7. [8] Lemmon Z H, Doebley J F. Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL[J]. Genetics, 2014, 198(1):345-353.doi:10.1534/genetics.114.165845. [9] 陈琼. 基于DH家系的玉米植株抗倒伏相关性状的QTL分析[D].郑州:河南农业大学, 2016. Chen Q. QTL analysis for the lodging resistance relevant of DH lines about maize plants[D].Zhengzhou:Henan Agricultural University, 2016. [10] 刘鹏飞. 基于四交群体的玉米耐密性及相关性状QTL定位与分析[D].兰州:甘肃农业大学, 2013. Liu P F. QTL mapping of density tolerance and related traits based on four-way cross population in maize(Zea mays L.)[D].Lanzhou:Gansu Agricultural University, 2013. [11] Mazaheri M, Heckwolf M, Vaillancourt B, Gage J L, Burdo B, Heckwolf S, Barry K, Lipzen A, Ribeiro C B, Kono T J Y, Kaeppler H F, Spalding E P, Hirsch C N, Robin Buell C, de Leon N, Kaeppler S M. Genome-wide association analysis of stalk biomass and anatomical traits in maize[J]. BMC Plant Biology, 2019, 19(1):45.doi:10.1186/s12870-019-1653-x. [12] 刘福鹏, 曲文利, 房海悦, 李莉莉, 金峰学, 吴委林. 玉米茎粗Meta-QTL及候选基因分析[J].东北农业科学, 2019, 44(5):30-33.doi:10.16423/j.cnki.1003-8701.2019.05.007. Liu F P, Qu W L, Fang H Y, Li L L, Jin F X, Wu W L. Analysis of Meta-QTL and candidate genes related to stem diameter in maize[J]. Journal of Northeast Agricultural Sciences, 2019, 44(5):30-33. [13] Gonzalo M, Vyn T J, Holland J B, McIntyre L M. Mapping density response in maize:A direct approach for testing genotype and treatment interactions[J]. Genetics, 2006, 173(1):331-348.doi:10.1534/genetics.105.045757. [14] Gonzalo M, Holland J B, Vyn T J, McIntyre L M. Direct mapping of density response in a population of B73Mo17 recombinant inbred lines of maize(Zea Mays L.)[J]. Heredity, 2010, 104(6):583-599.doi:10.1038/hdy.2009.140. [15] Ku L X, Zhang L K, Tian Z Q, Guo S L, Su H H, Ren Z Z, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Chen Y H. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize(Zea mays L.)[J]. Molecular Genetics and Genomics, 2015, 290(4):1223-1233.doi:10.1007/s00438-014-0987-1. [16] Ku L X, Ren Z Z, Chen X, Shi Y, Qi J S, Su H H, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Zhang X, Chen Y H. Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize(Zea mays L.)[J]. Molecular Breeding, 2016, 36(5):1-16.doi:10.1007/s11032-016-0483-x. [17] Wang H W, Liang Q J, Li K, Hu X J, Wu Y J, Wang H, Liu Z F, Huang C L. QTL analysis of ear leaf traits in maize(Zea mays L.) under different planting densities[J]. The Crop Journal, 2017, 5(5):387-395.doi:10.1016/j.cj.2017.05.001. [18] 任真真, 周金龙, 王小博, 李国辉, 朱宇光, 库丽霞, 陈彦惠. 两种密度条件下玉米穗上节间距QTL分析[J].玉米科学, 2016, 24(3):26-30.doi:10.13597/j.cnki.maize.science.20160305. Ren Z Z, Zhou J L, Wang X B, Li G H, Zhu Y G, Ku L X, Chen Y H. QTL mapping of internodes length above upmost ear under two planting densities in maize[J]. Journal of Maize Sciences, 2016, 24(3):26-30. [19] Yi Q, Hou X B, Liu Y H, Zhang X G, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Huang Y B. QTL analysis for plant architecture-related traits in maize under two different plant density conditions[J]. Euphytica, 2019, 215:148.doi:10.1007/s10681-019-2446-x. [20] Yi Q, Liu Y H, Hou X B, Zhang X G, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Wang Y B, Huang Y B. Quantitative trait loci mapping for yield-related traits under low and high planting densities in maize(Zea mays)[J]. Plant Breeding, 2020, 139(2):227-240.doi:10.1111/pbr.12778. [21] Guo J J, Chen Z L, Liu Z P, Wang B B, Song W B, Li W, Chen J, Dai J R, Lai J S. Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize(Zea mays L.)[J]. Euphytica, 2011, 182(3):409-422.doi:10.1007/s10681-011-0517-8. [22] 王辉, 梁前进, 胡小娇, 李坤, 黄长玲, 王琪, 何文昭, 王红武, 刘志芳. 不同密度下玉米穗部性状的QTL分析[J].作物学报, 2016, 42(11):1592-1600.doi:10.3724/SP.J.1006.2016.01592. Wang H, Liang Q J, Hu X J, Li K, Huang C L, Wang Q, He W Z, Wang H W, Liu Z F. QTL mapping for ear architectural traits under three plant densities in maize[J]. Acta Agronomica Sinica, 2016, 42(11):1592-1600. [23] 刘翔攀. 玉米自交系耐密性评价及SNP关联分析[D].泰安:山东农业大学, 2017. Liu X P. Evaluation on density-tolerant characteristics of maize inbred lines and association analysis between SNP and density-tolerance[D].Tai'an:Shandong Agricultural University, 2017. [24] Wang L W, Zhou Z Q, Li R G, Weng J F, Zhang Q G, Li X H, Wang B Q, Zhang W Y, Song W, Li X H. Mapping QTL for flowering time-related traits under three plant densities in maize[J]. The Crop Journal, 2021, 9(2):372-379.doi:10.1016/j.cj.2020.07.009. [25] Littell R C, Milliken G A, Stroup W W, Wolfinger R D, Schabenberger O. SAS for mixed models[M].2nd edition. North Carolina:SAS Institute, Cary, 2007. [26] Holland J B, Nyquist W E, Cervantes-Martínez C T. Estimating and interpreting heritability for plant breeding:An update[M]//Plant Breeding Reviews. Oxford:John Wiley & Sons, Inc., 2010:9-112.doi:10.1002/9780470650202.ch2. [27] The R Development Core Team. R:A language and environment for statistical computing[EB/OL].R Foundation for Statistical Computing, Vienna, Austria, 2015. [28] Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models Usinglme 4[J]. Journal of Statistical Software, 2015, 67(1):137528.doi:10.18637/jss.v067.i01. [29] Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications[J]. Plant Molecular Biology Reporter, 1999, 17(1):53-57.doi:10.1023/A:1007585532036. [30] Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. A large maize(Zea mays L.) SNP genotyping array:Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome[J]. PLoS One, 2011, 6(12):e28334.doi:10.1371/journal.pone.0028334. [31] Lorieux M. MapDisto:fast and efficient computation of genetic linkage maps[J]. Molecular Breeding, 2012, 30(2):1231-1235.doi:10.1007/s11032-012-9706-y. [32] Kosambi D D. The estimation of map distances from recombination values[J]. Annals of Eugenics, 1943, 12(1):172-175.doi:10.1111/j.1469.1809.1943.tb02321.x. [33] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3(3):269-283.doi:10.1016/j.cj.2015.01.001. [34] Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations[J]. Bioinformatics, 2008, 24(5):721-723.doi:10.1093/bioinformatics/btm494. [35] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize[J]. Molecular Breeding, 2011, 28(4):511-526.doi:10.1007/s11032-010-9500-7. [36] Liu H J, Luo X, Niu L Y, Xiao Y J, Chen L, Liu J, Wang X Q, Jin M L, Li W Q, Zhang Q H, Yan J B. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize[J]. Molecular Plant, 2017, 10(3):414-426.doi:10.1016/j.molp.2016.06.016. [37] 易强. 玉米骨干亲本掖478和08-641关键区段的遗传解析[D].成都:四川农业大学, 2020. Yi Q. Genetic dissection of specific genomic regions for maize foundation parents Ye478 and 08-641[D].Chengdu:Sichuan Agricultural University, 2020. [38] Tetio-Kagho F, Gardner F P. Responses of maize to plant population density.Ⅰ.Canopy development, light relationships, and vegetative growth[J]. Agronomy Journal, 1988, 80(6):930-935.doi:10.2134/agronj1988.00021962008000060018x. [39] Tetio-Kagho F, Gardner F P. Responses of maize to plant population density.Ⅱ.Reproductive development, yield, and yield adjustments[J]. Agronomy Journal, 1988, 80(6):935-940.doi:10.2134/agronj1988.00021962008000060019x. [40] Liu X G, Hu X J, Li K, Liu Z F, Wu Y J, Wang H W, Huang C L. Genetic mapping and genomic selection for maize stalk strength[J]. BMC Plant Biology, 2020, 20(1):196.doi:10.1186/s12870-020-2270-4. [41] Zhang Y L, Liu P, Zhang X X, Zheng Q, Chen M, Ge F, Li Z L, Sun W T, Guan Z R, Liang T H, Zheng Y, Tan X L, Zou C Y, Peng H W, Pan G T, Shen Y O. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize[J]. Frontiers in Plant Science, 2018, 9:611.doi:10.3389/fpls.2018.00611. [42] Zhang Y, Wang J L, Du J J, Zhao Y X, Lu X J, Wen W L, Gu S H, Fan J C, Wang C, Wu S, Wang Y J, Liao S J, Zhao C J, Guo X Y. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis[J]. Plant Biotechnology Journal, 2021, 19(1):35-50.doi:10.1111/pbi.13437. [43] López-Malvar A, Butrón A, Samayoa L F, Figueroa-Garrido D J, Malvar R A, Santiago R. Genome-wide association analysis for maize stem cell wall-bound hydroxycinnamates[J]. BMC Plant Biology, 2019, 19(1):519.doi:10.1186/s12870-019-2135-x. [44] Yi Q, Liu Y H, Zhang X G, Hou X B, Zhang J J, Liu H M, Hu Y F, Yu G W, Huang Y B. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL populations[J]. Journal of Genetics, 2018, 97(1):253-266.doi:10.1007/s12041-018-0908-x. [45] Yi Q, Liu Y H, Hou X B, Zhang X G, Li H, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Wang Y B, Huang Y B. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize(Zea mays L.)[J]. BMC Plant Biology, 2019, 19(1):392.doi:10.1186/s12870-019-2009-2. |