[1] 山仑, 邓西平, 康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报, 2002, 33(9):27-31.doi:10.3321/j.issn:0559-9350.2002.09.005. Shan L, Deng X P, Kang S Z. Current situation and perspective of agricultural water used in semiarid area of China[J]. Journal of Hydraulic Engineering, 2002, 33(9):27-31. [2] 陈禹竹, 唐琦勇, 顾美英, 朱静, 刘晓静, 崔卫东, 张志东.盐爪爪根部微生物分布特征及盐浓度对碳源代谢分析的影响[J].微生物学通报, 2019, 46(11):2900-2908.doi:10.13344/j.microbiol.china.190020. Chen Y Z, Tang Q Y, Gu M Y, Zhu J, Liu X J, Cui W D, Zhang Z D.Microbial distribution characteristics around the roots of Kalidium foliatum and the effect of salt concentrations on microbial metabolism analysis[J]. Microbiology China, 2019, 46(11):2900-2908. [3] 徐文静, 靳晓东, 杨秋生.植物根际微生物的影响因素研究进展[J].河南农业科学, 2014, 43(5):6-12.doi:10.15933/j.cnki.1004-3268.2014.05.009. Xu W J, Jin X D, Yang Q S.Research progress on factors influencing plant rhizosphere microorganism[J]. Journal of Henan Agricultural Sciences, 2014, 43(5):6-12. [4] Barea J M, Pozo M J, Azcón R, Azcón-Aguilar C. Microbial co-operation in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56(417):1761-1778.doi:10.1093/jxb/eri197. [5] 陈智裕, 马静, 赖华燕, 马祥庆, 吴鹏飞.植物根系对根际微环境扰动机制研究进展[J].生态学杂志, 2017, 36(2):524-529.doi:10.13292/j.1000-4890.201702.021. Chen Z Y, Ma J, Lai H Y, Ma X Q, Wu P F.Research advances in the mechanisms of plant root systems disturbance in rhizosphere micro-environment[J]. Chinese Journal of Ecology, 2017, 36(2):524-529. [6] Bai Y, Müller D B, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch P C, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582):364-369.doi:10.1038/nature16192. [7] Correa-Galeote D, Bedmar E J, Fernández-González A J, Fernández-González A J, Fernández-López M, Arone G J, Arone G J. Bacterial communities in the rhizosphere of amilaceous maize(Zea mays L.) as assessed by pyrosequencing[J]. Frontiers in Plant Science, 2016, 7:1016.doi:10.3389/fpls.2016.01016. [8] Singh A, Sarma B K, Upadhyay R S, Singh H B.Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities[J]. Microbiological Research, 2013, 168(1):33-40.doi:10.1016/j.micres.2012.07.001. [9] 张智猛, 慈敦伟, 丁红, 宋文武, 符方平, 康涛, 戴良香.花生品种耐盐性指标筛选与综合评价[J].应用生态学报, 2013, 24(12):3487-3494.doi:10.13287/j.1001-9332.2013.0584. Zhang Z M, Ci D W, Ding H, Song W W, Fu F P, Kang T, Dai L X.Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties[J]. Chinese Journal of Applied Ecology, 2013, 24(12):3487-3494. [10] 李瀚, 杨吉顺, 张冠初, 慈敦伟, 丁红, 秦斐斐, 张智猛, 石书兵.花生品种萌发期耐盐性比较鉴定[J].花生学报, 2015, 44(4):48-52, 57.doi:10.14001/j.issn.1002-4093.2015.04.009. Li H, Yang J S, Zhang G C, Ci D W, Ding H, Qin F F, Zhang Z M, Shi S B.Identification of salt tolerance in germination period of peanut varieties[J]. Journal of Peanut Science, 2015, 44(4):48-52, 57. [11] 慈敦伟, 戴良香, 宋文武, 张智猛.花生萌发至苗期耐盐胁迫的基因型差异[J].植物生态学报, 2013, 37(11):1018-1027.doi:10.3724/SP.J.1258.2013.00105. Ci D W, Dai L X, Song W W, Zhang Z M.Genotypic differences in salt tolerance from germination to seedling stage in peanut[J]. Chinese Journal of Plant Ecology, 2013, 37(11):1018-1027. [12] 温赛群.苗期花生品种耐盐性鉴定及生理生化评价[D].保定:河北农业大学, 2019. Wen S Q. Identification of salt tolerance of peanut varieties at seedling stage and physiological-biochemical evaluation[D].Baoding:Hebei Agricultural University, 2019. [13] 田家明, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 石书兵.外源钙对盐碱土与非盐碱土花生生长发育与光合特性的影响[J].华北农学报, 2018, 33(6):130-136.doi:10.7668/hbnxb.2018.06.018. Tian J M, Zhang Z M, Dai L X, Zhang G C, Ci D W, Ding H, Yang J S, Shi X L, Shi S B.Effects of exogenous calcium on the development and photosynthetic characteristics of peanut in saline-alkali soil and normal soil[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6):130-136. [14] 张冠初, 史晓龙, 慈敦伟, 丁红, 杨吉顺, 田家明, 张智猛, 戴良香.干旱和盐胁迫对花生干物质积累及光合特性的影响[J].核农学报, 2019, 33(5):999-1005.doi:10.11869/j.issn.100-8551.2019.05.0999. Zhang G C, Shi X L, Ci D W, Ding H, Yang J S, Tian J M, Zhang Z M, Dai L X.Effect of drought and salt stress on accumulation of plant dry weight and photosynthetic characteristics[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5):999-1005. [15] 张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香.干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响[J].华北农学报, 2018, 33(3):176-181.doi:10.7668/hbnxb.2018.03.026. Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidase activities[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3):176-181. [16] 史晓龙, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 田家明.外源施钙对盐胁迫下花生营养元素吸收与分配的影响[J].应用生态学报, 2018, 29(10):3302-3310.doi:10.13287/j.1001-9332.201810.026. Shi X L, Zhang Z M, Dai L X, Zhang G C, Ci D W, Ding H, Tian J M. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress[J]. Chinese Journal of Applied Ecology, 2018, 29(10):3302-3310. [17] Dai L X, Zhang G C, Yu Z P, Ding H, Xu Y, Zhang Z M.Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. International Journal of Molecular Sciences, 2019, 20(9):2265.doi:10.3390/ijms20092265. [18] Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:A review[J]. Ann Bot, 2009, 104(7):1263-1280.doi:10.1093/aob/mcp251. [19] Geng L L, Shao G X, Raymond B, Wang M L, Sun X X, Shu C L, Zhang J. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut(Arachis hypogaea L.) rhizosphere microbiome[J]. Microbiological Research, 2018, 211:13-20.doi:10.1016/j.micres.2018.02.008. [20] 戴良香, 康涛, 慈敦伟, 丁红, 徐扬, 张智猛, 张岱, 李文金.黄河三角洲盐碱地花生根层土壤菌群结构多样性[J].生态学报, 2019, 39(19):7169-7178.doi:10.5846/stxb201807051469. Dai L X, Kang T, Ci D W, Ding H, Xu Y, Zhang Z M, Zhang D, Li W J.Comparison of the microbial community in the rhizosphere of peanuts between saline-alkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Delta[J]. Acta Ecologica Sinica, 2019, 39(19):7169-7178. [21] 徐扬, 张冠初, 丁红, 慈敦伟, 秦斐斐, 张智猛, 戴良香. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响[J].应用生态学报, 2020, 31(4):1305-1313.doi:10.13287/j.1001-9332.202004.036. Xu Y, Zhang G C, Ding H, Ci D W, Qin F F, Zhang Z M, Dai L X.Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1305-1313. [22] 杜滢鑫, 谢宝明, 蔡洪生, 唐璐, 郭长虹.大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J].生态学报, 2016, 36(3):740-747.doi:10.5846/stxb201404020621. Du Y X, Xie B M, Cai H S, Tang L, Guo C H.Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing saline-alkali soil region[J]. Acta Ecologica Sinica, 2016, 36(3):740-746. [23] Fu C, Liu X X, Yang W W, Zhao C M, Liu J.Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum[J]. Genetics and Molecular Research, 2016, 15(2):15028301.doi:10.4238/gmr.15028301. [24] Wu L K, Wang J Y, Wu H M, Chen J, Xiao Z G, Qin X J, Zhang Z Y, Lin W X. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture[J]. International Journal of Molecular Sciences, 2018, 19(8):2394.doi:10.3390/ijms19082394. [25] Guan P Y, Wang J, Li H, Xie C, Zhang S Z, Wu C G, Yang G D, Yan K, Huang J G, Zheng C C.SENSITIVE to SALT1, an endoplasmic reticulum-localized chaperone, positively regulates salt resistance[J]. Plant Physiology, 2018, 178(3):1390-1405.doi:10.1104/pp.18.00840. [26] Peiffer J A, Spor A, Koren O, Jin Z, Tringe S G, Dangl J L, Buckler E S, Ley R E.Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6548-6553.doi:10.1073/pans.1302837110. [27] 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云.黄河三角洲刺槐根际与非根际细菌结构及多样性[J].土壤学报, 2017, 54(5):1293-1302.doi:10.11766/trxb201703230510. Ding X J, Jing R Y, Huang Y L, Chen B J, Ma F Y.Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta[J]. Acta Pedologica Sinica, 2017, 54(5):1293-1302. [28] Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green S J, Hadar Y, Minz D. Niche and host-associated functional signatures of the root surface microbiome[J]. Nature Communication s, 2014, 5:4950.doi:10.1038/ncomms5950. [29] Lebeis S L.The potential for give and take in plant-microbiome relationships[J]. Frontiers in Plant Science, 2014, 5:287.doi:10.3389/fpls.2014.00287. [30] Vandenkoornhuyse P, Quaiser A, Duhamel M, Van A L, Dufresne A. The importance of the microbiome of the plant holobiont[J]. New Phytologist, 2015, 206(4):1196-1206.doi:10.1111/nph.13312. [31] 王芬, 段洪利, 刘亚飞, 王天弋.人工湿地处理含盐富营养化水的植物根际与非根际菌群分析[J].环境工程学报, 2020, 14(7):1844-1851.doi:10.12030/j.cjee.201909029. Wang F, Duan H L, Liu Y F, Wang T Y. Analysis of bacterial community at the rhizosphere and non-rhizosphere of plants in constructed wetland treating brackish eutrophic water[J]. Chinese Journal of Environmental Engineering, 2020, 14(7):1844-1851. [32] Fozo E M, Quivey R G. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments[J]. Applied and Environmental Microbiology, 2004, 70(2):929-936.doi:10.1128/aem.70.2.929-936.2004. [33] DeBruyn J M, Nixon L T, Fawaz M N, Johnson A M, Radosevich M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil[J]. Appl Environ Microbiol, 2011, 77(17):6295-6300.doi:10.1128/aem.05005-11. [34] Doolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities[J]. Environmental Science and Pollution Research, 2018, 25(32):31848-31862.doi:10.1007/s11356-017-0048-5. [35] Jeske O, Surup F, Ketteniβ M, Rast P, Förster B, Jogler M, Wink J, Jogler C. Developing techniques for the utilization of planctomycetes as producers of bioactive molecules[J]. Frontiers in Microbiology, 2016, 7:1242.doi:10.3389/fmicb.2016.01242. |