[1] |
doi: 10.3864/j.issn.0578-1752.2017.11.002
|
|
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Changes of maize planting density in China[J]. Scientia Agricultura Sinica, 2017, 50(11):1960-1972.
|
[2] |
Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Li S K. How to increase maize production without extra nitrogen input[J]. Resources,Conservation and Recycling, 2020, 160:104913. doi: 10.1016/j.resconrec.2020.104913.
doi: 10.1016/j.resconrec.2020.104913
|
[3] |
Testa G, Reyneri A, Blandino M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings[J]. European Journal of Agronomy, 2016, 72:28-37. doi: 10.1016/j.eja.2015.09.006.
doi: 10.1016/j.eja.2015.09.006
URL
|
[4] |
Qian C R, Yu Y, Gong X J, Jiang Y B, Zhao Y, Yang Z L, Hao Y B, Li L, Song Z W, Zhang W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China[J]. The Crop Journal,2016, 4(6):459-467.doi: 10.1016/j.cj.2016.04.004.
doi: 10.1016/j.cj.2016.04.004
URL
|
[5] |
doi: 10.3724/SP.J.1006.2015.00297
|
|
Xu Y J, Gu D J, Qin H, Zhang H, Wang Z Q, Yang J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling[J]. Acta Agronomica Sinica, 2015, 41(2):297-307.
doi: 10.3724/SP.J.1006.2015.00297
URL
|
[6] |
doi: 10.14083/j.issn.1001-4942.2011.04.019
|
|
Wang X Y, Zhang H S, Gai W L, Duan M T, Jiang W. Effects of plant density on yield and kernel filling of different maize varieties[J]. Shandong Agricultural Sciences, 2011, 43(4):36-38.
|
[7] |
Yang M, Geng M Y, Shen P F, Chen X H, Li Y J, Wen X X. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize( Zea mays L.)[J]. Plant Physiology and Biochemistry, 2019, 135:304-309. doi: 10.1016/j.plaphy.2018.12.025.
doi: 10.1016/j.plaphy.2018.12.025
URL
|
[8] |
doi: 10.3724/SP.J.1006.2013.01826
|
|
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize(Zea mays L.)genotypes[J]. Acta Agronomica Sinica, 2013, 39(10):1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
URL
|
[9] |
Zhai L C, Wang Z B, Song S J, Zhang L H, Zhang Z B, Jia X L. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity[J]. Agricultural Water Management, 2021, 245:106600. doi: 10.1016/j.agwat.2020.106600.
doi: 10.1016/j.agwat.2020.106600
URL
|
[10] |
Wang W Q, Li Q X, Tian F X, Deng Y M, Wang W L, Wu Y Z, Yang J J, Wang Y, Hao Q Q, Wang W. Wheat NILs contrasting in grain size show different expansin expression,carbohydrate and nitrogen metabolism that are correlated with grain yield[J]. Field Crops Research, 2019, 241:107564.doi: 10.1016/j.fcr.2019.107564.
doi: 10.1016/j.fcr.2019.107564
URL
|
[11] |
冯鹏, 申晓慧, 郑海燕, 张华, 李增杰, 杨海宽, 李明顺. 种植密度对玉米籽粒灌浆及脱水特性的影响[J]. 中国农学通报, 2014, 30(6):92-100.
|
|
Feng P, Shen X H, Zheng H Y, Zhang H, Li Z J, Yang H K, Li M S. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids[J]. Chinese Agricultural Science Bulletin, 2014, 30(6):92-100.
|
[12] |
doi: 10.14083/j.issn.1001-4942.2017.1.008
|
|
Liu J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of increasing density and nitrogen application rate on yield and grain-filling characteristics of different density-tolerance maize hybrids[J]. Shandong Agricultural Sciences, 2017, 49(1):38-47.
|
[13] |
doi: 10.3724/SP.J.1006.2019.93011
|
|
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize[J]. Acta Agronomica Sinica, 2019, 45(12):1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
|
[14] |
doi: 10.3321/j.issn:0496-3490.1988.03.002
|
|
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice[J]. Acta Agronomica Sinica, 1988, 14(3):182-193.
|
[15] |
Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling[J]. Plant Physiology, 2004, 135(3):1621-1629. doi: 10.1104/pp.104.041038.
doi: 10.1104/pp.104.041038
pmid: 15235118
|
[16] |
李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究[J]. 作物学报, 1997, 23(3):338-344.
|
|
Li T G, Shen B, Chen N, Luo Y K. Effect of Q-enzyme on the chalkiness formation of rice grain[J]. Acta Agronomica Sinica, 1997, 23(3):338-344.
|
[17] |
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
|
|
Zou Q. Plant physiology experiment[M]. Beijing: China Agriculture Press, 2000.
|
[18] |
张宪政. 植物生理学实验技术[M]. 沈阳: 辽宁科学技术出版社, 1994.
|
|
Zhang X Z. Experiment technology of plant physiology[M]. Shenyang: Liaoning Science and Technology Press, 1994.
|
[19] |
Zhang M, Chen T, Latifmanesh H, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. How plant density affects maize spike differentiation,kernel set,and grain yield formation in Northeast China?[J]. Journal of Integrative Agriculture, 2018, 17(8):1745-1757. doi: 10.1016/S2095-3119(17)61877-X.
doi: 10.1016/S2095-3119(17)61877-X
URL
|
[20] |
Gonzalez V H, Tollenaar M, Bowman A, Good B, Lee E A. Maize yield potential and density tolerance[J]. Crop Science, 2018, 58(2):472-485. doi: 10.2135/cropsci2016.06.0547.
doi: 10.2135/cropsci2016.06.0547
URL
|
[21] |
doi: 10.3864/j.issn.0578-1752.2017.12.005
|
|
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi[J]. Scientia Agricultura Sinica, 2017, 50(12):2238-2246.
|
[22] |
Shen L X, Huang Y K, Li T. Top-grain filling characteristics at an early stage of maize( Zea mays L.)with different nitrogen use efficiencies[J]. Journal of Integrative Agriculture, 2017, 16(3):626-639.doi: 10.1016/S2095-3119(16)61457-0.
doi: 10.1016/S2095-3119(16)61457-0
URL
|
[23] |
Li R F, Liu P, Dong S T, Zhang J W, Zhao B. Increased maize plant population induced leaf senescence,suppressed root growth,nitrogen uptake,and grain yield[J]. Agronomy Journal, 2019, 111(4):1581-1591. doi: 10.2134/agronj2018.09.0554.
doi: 10.2134/agronj2018.09.0554
URL
|
[24] |
Wei S S, Wang X Y, Li G H, Qin Y Y, Jiang D, Dong S T. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions[J]. Frontiers in Plant Science, 2019, 10:180.
doi: 10.3389/fpls.2019.00180
pmid: 30881365
|
|
doi: 10.3389/fpls.2019.00180
pmid: 30881365
|
[25] |
doi: 10.3724/SP.J.1006.2018.01517
|
|
Wan Z H, Ren B Z, Zhao B, Liu P, Dong S T, Zhang J W. Grain filling and dehydration characteristics of summer maize hybrids differing in maturities and effect of plant density[J]. Acta Agronomica Sinica, 2018, 44(10):1517-1526.
doi: 10.3724/SP.J.1006.2018.01517
URL
|
[26] |
Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion[J]. Journal of Experimental Botany, 2018, 69(7):1599-1613. doi: 10.1093/jxb/ery013.
doi: 10.1093/jxb/ery013
pmid: 29365129
|
[27] |
于涛. 玉米粒位效应的差异蛋白质组学机制及其对6-BA调控的响应[D]. 泰安: 山东农业大学, 2017.
|
|
Yu T. Differential proteomic mechanisms of grain position effect in maize and its response to 6-benzylaminopurine(6-BA)regulation[D]. Taian: Shandong Agricultural University, 2017.
|
[28] |
doi: 10.16768/j.issn.1004-874x.2010.03.026
|
|
Ma Y H, Xue J Q, Zhang R H, Zhang L C, Hao Y, Sun J. Relationship between dry matter accumulation and distribution to yield of different maize cultivars[J]. Guangdong Agricultural Sciences, 2010, 37(3):36-40.
|
[29] |
Liu X W, Wang X L, Wang X Y, Gao J, Luo N, Meng Q F, Wang P. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering[J]. Environmental and Experimental Botany, 2020, 179:104213. doi: 10.1016/j.envexpbot.2020.104213.
doi: 10.1016/j.envexpbot.2020.104213
URL
|
[30] |
Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize[J]. Plant Physiology, 1988, 86(4):1013-1019. doi: 10.1104/pp.86.4.1013.
doi: 10.1104/pp.86.4.1013
pmid: 16666024
|
[31] |
Lohot V D, Sharma-Natu P, Pandey R, Ghildiyal M C. ADP-glucose pyrophosphorylase activity in relation to starch accumulation and grain growth in wheat cultivars[J]. Current Science, 2010, 98(3):426-430.doi: 10.1089/ARS.2008.2203.
doi: 10.1089/ARS.2008.2203
|
[32] |
Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behaviour:A focus on rice starch[J]. Carbohydrate Polymers, 2004, 58(3):245-266. doi: 10.1016/j.carbpol.2004.06.003.
doi: 10.1016/j.carbpol.2004.06.003
URL
|
[33] |
杨苗. 花后干旱影响玉米碳氮代谢的生理特征及基因表达谱分析[D]. 杨凌: 西北农林科技大学, 2018.
|
|
Yang M. Post-anthesis drought affects the physiological characteristics and gene expression profiles of carbon-nitrogen metabolism and analysis of in maize[D]. Yangling: Northwest A&F University, 2018.
|