[1] Li Y P, Xu M L. CCT family genes in cereal crops:A current overview[J]. The Crop Journal, 2017, 5(6):449-458.doi:10.1016/j.cj.2017.07.001. [2] Shim J S, Kubota A, Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration[J]. Plant Physiology, 2017, 173(1):5-15.doi:10.1104/pp.16.01327. [3] Cockram J, Jones H, Leigh F J, O'Sullivan D, Powell W, Laurie D A, Greenland A J. Control of flowering time in temperate cereals:Genes, domestication, and sustainable productivity[J]. Journal of Experimental Botany, 2007, 58(6):1231-1244.doi:10.1093/jxb/erm042. [4] Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey P C, O'Sullivan D M. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae[J]. PLoS One, 2012, 7(9):e45307.doi:10.1371/journal.pone.0045307. [5] Salomé P A, McClung C R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock[J]. The Plant Cell, 2005, 17(3):791-803.doi:10.1105/tpc.104.029504. [6] Yoo S K, Chung K S, Kim J, Lee J H, Hong S M, Yoo S J, Yoo S Y, Lee J S, Ahn J H. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 2005, 139(2):770-778.doi:10.1104/pp.105.066928. [7] Cheng X F, Wang Z Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana[J]. The Plant Journal, 2005, 43(5):758-768.doi:10.1111/j.1365-313X.2005.02491.x. [8] Ledger S, Strayer C, Ashton F, Kay S A, Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes[J]. The Plant Journal, 2001, 26(1):15-22.doi:10.1046/j.1365-313x.2001.01003.x. [9] Jin M L, Liu X G, Jia W, Liu H J, Li W Q, Peng Y, Du Y F, Wang Y B, Yin Y J, Zhang X H, Liu Q, Deng M, Li N, Cui X Y, Hao D Y, Yan J B. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT[J]. Journal of Integrative Plant Biology, 2018, 60(6):465-480.doi:10.1111/jipb.12632. [10] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6):761-767.doi:10.1038/ng.143. [11] 贾小平, 袁玺垒, 李剑峰, 王永芳, 张小梅, 张博, 全建章, 董志平. 不同光温条件谷子光温互作模式研究及SiCCT 基因表达分析[J].作物学报, 2020, 46(7):1052-1062.doi:10.3724/SP.J.1006.2020.94144. Jia X P, Yuan X L, Li J F, Wang Y F, Zhang X M, Zhang B, Quan J Z, Dong Z P. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet(Setaria italica L.)[J]. Acta Agronomica Sinica, 2020, 46(7):1052-1062. [12] 宋远丽, 高志超, 栾维江. 温度和光周期对水稻抽穗期调控的交互作用[J].中国科学(生命科学), 2012, 42(4):316-325.doi:10.1007/s11427-012-4300-4. Song Y L, Gao Z C, Luan W J. Interaction of temperature and photoperiod on regulation of heading date of rice[J]. Science in China (Series C), 2012, 42(4):316-325. [13] 金亮, 包劲松. 植物性状-标记关联分析研究进展[J].分子植物育种, 2009, 7(6):1048-1063.doi:10.3969/mpb.007.001048. Jin L, Bao J S. Progress on the trait-marker association analysis in plants[J]. Molecular Plant Breeding, 2009, 7(6):1048-1063. [14] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet(Setaria italica)[J]. Nature Genetics, 2013, 45(8):957-961.doi:10.1038/ng.2673. [15] Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, Prasad M. Genome-wide association study of major agronomic traits in foxtail millet(Setaria italica L.) using ddRAD sequencing[J]. Scientific Reports, 2019, 9(1):5020.doi:10.1038/s41598-019-41602-6. [16] Jaiswal V, Bandyopadhyay T, Gahlaut V, Gupta S, Dhaka A, Ramchiary N, Prasad M. Genome-wide association study(GWAS) delineates genomic loci for ten nutritional elements in foxtail millet(Setaria italica L.)[J]. Journal of Cereal Science, 2019, 85:48-55.doi:10.1016/j.jcs.2018.11.006. [17] 贾小平, 张博, 董志平, 全建章, 王永芳, 张小梅, 袁玺垒, 李剑峰, 戴凌峰.海南短日照条件下谷子穗部性状的全基因组关联分析[J].河南农业科学, 2018, 47(9):33-40.doi:10.15933/j.cnki.1004-3268.2018.09.006. Jia X P, Zhang B, Dong Z P, Quan J Z, Wang Y F, Zhang X M, Yuan X L, Li J F, Dai L F. Genome-wide association analysis of panicle traits of foxtail millet under Hainan short-day condition[J]. Journal of Henan Agricultural Sciences, 2018, 47(9):33-40. [18] 袁玺垒, 戴凌峰, 张小梅, 郁飞燕, 贾小平. 谷子Hd1-like基因的克隆及其与农艺性状的关联分析[J].河南农业科学, 2018, 47(6):24-30.doi:10.15933/j.cnki.1004-3268.2018.06.005. Yuan X L, Dai L F, Zhang X M, Yu F Y, Jia X P. Putative Hd1-like gene cloning and its preliminary association with agronomic traits in foxtail millet(Setaria italica)[J]. Journal of Henan Agricultural Sciences, 2018, 47(6):24-30. [19] 贾小平, 张博, 全建章, 李剑峰, 王永芳, 袁玺垒. 不同光周期条件下谷子株高的全基因组关联分析[J].华北农学报, 2019, 34(4):16-23.doi:10.7668/hbnxb.201750856. Jia X P, Zhang B, Quan J Z, Li J F, Wang Y F, Yuan X L. Genome-wide association analysis of plant height in foxtail millet under different photoperiod conditions[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):16-23. [20] 蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1a、ZmTOC1b 基因的克隆、表达及亚细胞定位分析[J].华北农学报, 2019, 34(4):24-31.doi:10.7668/hbnxb.201751601. Cai Y T, Jia L, Tuo H Y. Cloning, expression and subcellular localization of ZmTOC1a and ZmTOC1b genes in maize[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):24-31. [21] 李璐, 王翔, 王状元, 曹云, 胡格, 王留壹, 尹钧. 小麦光敏色素互作因子TaPIF4 基因的克隆与表达分析[J].华北农学报, 2019, 34(1):74-82.doi:10.7668/hbnxb.201750739. Li L, Wang X, Wang Z Y, Cao Y, Hu G, Wang L Y, Yin J. Cloning and expression analysis of phytochrome interacting factor TaPIF4 in wheat[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):74-82. |