[1] |
Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes[J]. Molecular Plant, 2013, 6(6):1877-1888. doi: 10.1093/mp/sst088.
doi: 10.1093/mp/sst088
URL
|
[2] |
李佳, 刘运华, 张余, 陈晨, 余霞, 余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9):837-846. doi: 10.16288/j.yczz.17-113.
doi: 10.16288/j.yczz.17-113
|
|
Li J, Liu Y H, Zhang Y, Chen C, Yu X, Yu S W. Drought stress modulates diurnal oscillations of circadian clock and drought-responsive genes in Oryza sativa L.[J]. Hereditas, 2017, 39(9):837-846.
|
[3] |
Campoli C, Shtaya M, Davis S J, von Korff M. Expression conservation within the circadian clock of a monocot:Natural variation at barley Ppd-H1 affects circadian expression of flowering time genes,but not clock orthologs[J]. BMC Plant Biology, 2012, 12:97. doi: 10.1186/1471-2229-12-97.
doi: 10.1186/1471-2229-12-97
pmid: 22720803
|
[4] |
Zhang W P, Zhao G Y, Gao L F, Kong X Y, Guo Z A, Wu B H, Jia J Z. Functional studies of heading date-related gene TaPRR73,a paralog of Ppd1 in common wheat[J]. Frontiers in Plant Science, 2016, 7:772. doi: 10.3389/fpls.2016.00772.
doi: 10.3389/fpls.2016.00772
|
[5] |
赵淑靓. 玉米伪应答调节基因ZmPRR73的克隆与表达分析[D]. 洛阳: 河南科技大学, 2018.
|
|
Zhao S L. Gene cloning and ecpressing analysis of pseudo-response regulator 73(ZmPRR73)in maize[D]. Luoyang: Henan University of Science and Technology, 2018.
|
[6] |
Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, van Eck J. Setaria viridis:A model for C4 photosynthesis[J]. The Plant Cell, 2010, 22(8):2537-2544. doi: 10.1105/tpc.110.075309.
doi: 10.1105/tpc.110.075309
pmid: 20693355
|
[7] |
Lata C R, Gupta S, Prasad M. Foxtail millet:A model crop for genetic and genomic studies in bioenergy grasses[J]. Critical Reviews in Biotechnology, 2013, 33(3):328-343. doi: 10.3109/07388551.2012.716809.
doi: 10.3109/07388551.2012.716809
URL
|
[8] |
贾小平, 张博, 董志平, 全建章, 王永芳, 张小梅, 袁玺垒, 李剑峰, 戴凌峰. 海南短日照条件下谷子穗部性状的全基因组关联分析[J]. 河南农业科学, 2018, 47(9):33-40. doi: 10.15933/j.cnki.1004-3268.2018.09.006.
doi: 10.15933/j.cnki.1004-3268.2018.09.006
|
|
Jia X P, Zhang B, Dong Z P, Quan J Z, Wang Y F, Zhang X M, Yuan X L, Li J F, Dai L F. Genome-wide association analysis of panicle traits of foxtail millet under Hainan short-day condition[J]. Journal of Henan Agricultural Sciences, 2018, 47(9):33-40.
|
[9] |
doi: 10.7668/hbnxb.201750672
|
|
Jia X P, Zhang B, Li J F, Yuan X L, Lu P, Dai L F. Association analysis of SSR markers and photoperiod sensitivity in foxtail millet[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):89-96.
|
[10] |
Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. Genes encoding pseudo-response regulators:Insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2000, 41(6):791-803. doi: 10.1093/pcp/41.6.791.
doi: 10.1093/pcp/41.6.791
pmid: 10945350
|
[11] |
doi: 10.13430/j.cnki.jpgr.20190403001
|
|
Li J F, Li T, Jia X P. Advances on unlocking the functional basis of PRRs family genes[J]. Journal of Plant Genetic Resources, 2019, 20(6):1399-1407.
|
[12] |
Farré E M, Kay S A. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis[J]. The Plant Journal, 2007, 52(3):548-560. doi: 10.1111/j.1365-313X.2007.03258.x.
doi: 10.1111/j.1365-313X.2007.03258.x
URL
|
[13] |
Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana:Insight into the plant circadian clock[J]. Plant and Cell Physiology, 2000, 41(9):1002-1012. doi: 10.1093/pcp/pcd043.
doi: 10.1093/pcp/pcd043
pmid: 11100772
|
[14] |
Ito S, Matsushika A, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T. Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2003, 44(11):1237-1245. doi: 10.1093/pcp/pcg136.
doi: 10.1093/pcp/pcg136
URL
|
[15] |
Kiba T, Henriques R, Sakakibara H, Chua N H. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana[J]. The Plant Cell, 2007, 19(8):2516-2530. doi: 10.1105/tpc.107.053033.
doi: 10.1105/tpc.107.053033
URL
|
[16] |
Kaczorowski K A, Quail P H. Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock[J]. The Plant Cell, 2003, 15(11):2654-2665. doi: 10.1105/tpc.015065.
doi: 10.1105/tpc.015065
URL
|
[17] |
Salomé P A, Weigel D, McClung C R. The role of the Arabidopsis morning loop components CCA1,LHY,PRR7,and PRR9 in temperature compensation[J]. The Plant Cell, 2010, 22(11):3650-3661. doi: 10.1105/tpc.110.079087.
doi: 10.1105/tpc.110.079087
URL
|
[18] |
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N H, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9,7,and 5 are transcriptional repressors in the Arabidopsis circadian clock[J]. The Plant Cell, 2010, 22(3):594-605. doi: 10.1105/tpc.109.072892.
doi: 10.1105/tpc.109.072892
pmid: 20233950
|
[19] |
Lai A G, Doherty C J, Mueller-Roeber B, Kay S A, Schippers J H, Dijkwel P P. Circadian clock-associated 1 regulates ROS homeostasis and oxidative stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42):17129-17134. doi: 10.1073/pnas.1209148109.
doi: 10.1073/pnas.1209148109
|
[20] |
Liu T, Carlsson J, Takeuchi T, Newton L, Farré E M. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7[J]. The Plant Journal, 2013, 76(1):101-114. doi: 10.1111/tpj.12276.
doi: 10.1111/tpj.12276
|
[21] |
Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response[J]. Plant and Cell Physiology, 2009, 50(3):447-462. doi: 10.1093/pcp/pcp004.
doi: 10.1093/pcp/pcp004
pmid: 19131357
|
[22] |
Seo P J, Mas P. STRESSing the role of the plant circadian clock[J]. Trends in Plant Science, 2015, 20(4):230-237. doi: 10.1016/j.tplants.2015.01.001.
doi: 10.1016/j.tplants.2015.01.001
URL
|
[23] |
Keily J, MacGregor D R, Smith R W, Millar A J, Halliday K J, Penfield S. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock[J]. The Plant Journal, 2013, 76(2):247-257. doi: 10.1111/tpj.12303.
doi: 10.1111/tpj.12303
pmid: 23909712
|
[24] |
Briat J F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants[J]. Annals of Botany, 2010, 105(5):811-822. doi: 10.1093/aob/mcp128.
doi: 10.1093/aob/mcp128
URL
|
[25] |
doi: 10.13430/j.cnki.jpgr.20180207005
|
|
Jia X P, Li J F, Quan J Z, Wang Y F, Dong Z P, Zhang B, Yuan X L. Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties(Setaria italica)under different photoperiod conditions[J]. Journal of Plant Genetic Resources, 2018, 19(5):919-924.
|
[26] |
doi: 10.3864/j.issn.0578-1752.2018.13.001
|
|
Jia X P, Yuan X L, Li J F, Zhang B, Zhang X M, Guo X P, Chen C Y. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions[J]. Scientia Agricultura Sinica, 2018, 51(13):2429-2441.
|
[27] |
doi: 10.15933/j.cnki.1004-3268.2018.06.005
|
|
Yuan X L, Dai L F, Zhang X M, Yu F Y, Jia X P. Putative Hd1-like gene cloning and its preliminary association with agronomic traits in foxtail millet(Setaria italica)[J]. Journal of Henan Agricultural Sciences, 2018, 47(6):24-30.
|
[28] |
Ni X M, Xia Q J, Zhang H B, Cheng S, Li H, Fan G Y, Guo T, Huang P, Xiang H T, Chen Q C, Li N, Zou H F, Cai X M, Lei X J, Wang X M, Zhou C S, Zhao Z H, Zhang G Y, Du G H, Cai W, Quan Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population[J]. GigaScience, 2017, 6(2):giw005. doi: 10.1093/gigascience/giw005.
doi: 10.1093/gigascience/giw005
|
[29] |
doi: 10.7668/hbnxb.201750856
|
|
Jia X P, Zhang B, Quan J Z, Li J F, Wang Y F, Yuan X L. Genome-wide association analysis of plant height in foxtail millet under different photoperiod conditions[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):16-23.
|
[30] |
Doust A N, Mauro-Herrera M, Hodge J G, Stromski J. The C4 model grass Setaria is a short day plant with secondary long day genetic regulation[J]. Frontiers in Plant Science, 2017, 8:1062. doi: 10.3389/fpls.2017.01062.
doi: 10.3389/fpls.2017.01062
URL
|
[31] |
谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012.
|
|
Xie L L. OTL mapping and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012.
|
[32] |
Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet( Setaria italica)[J]. Nature Genetics, 2013, 45(8):957-961. doi: 10.1038/ng.2673.
doi: 10.1038/ng.2673
URL
|
[33] |
Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing[J]. G3 Genes|Genomes|Genetics, 2017, 7(5):1587-1594. doi: 10.1534/g3.117.041517.
doi: 10.1534/g3.117.041517
|
[34] |
doi: 10.3724/SP.J.1006.2020.94144
|
|
Jia X P, Yuan X L, Li J F, Wang Y F, Zhang X M, Zhang B, Quan J Z, Dong Z P. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet(Setaria italica L.)[J]. Acta Agronomica Sinica, 2020, 46(7):1052-1062.
doi: 10.3724/SP.J.1006.2020.94144
URL
|
[35] |
doi: 10.13300/j.cnki.hnlkxb.2010.06.001
|
|
Chen H X, Shen G J, Wang L, Xing Y Z. Sequence evolution analysis of CCT domain gene family in rice,Arabidopsis,maize and Sorghum[J]. Journal of Huazhong Agricultural University, 2010, 29(6):669-676.
|
[36] |
Zhang L, Li Q P, Dong H J, He Q, Liang L W, Tan C, Han Z M, Yao W, Li G W, Zhao H, Xie W B, Xing Y Z. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice[J]. Scientific Reports, 2015, 5:7663. doi: 10.1038/srep07663.
doi: 10.1038/srep07663
pmid: 25563494
|
[37] |
Liu C, Song G Y, Zhou Y H, Qu X F, Guo Z B, Liu Z W, Jiang D M, Yang D C. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH,PH and SPP in rice[J]. Scientific Reports, 2015, 5:12803. doi: 10.1038/srep12803.
doi: 10.1038/srep12803
URL
|
[38] |
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics, 2006, 2(7):e106. doi: 10.1371/journal.pgen.0020106.
doi: 10.1371/journal.pgen.0020106
pmid: 16839183
|
[39] |
Hemming M N, Walford S A, Fieg S, Dennis E S, Trevaskis B. Identification of high-temperature-responsive genes in cereals[J]. Plant Physiology, 2012, 158(3):1439-1450. doi: 10.1104/pp.111.192013.
doi: 10.1104/pp.111.192013
pmid: 22279145
|
[40] |
Cober E R, Stewart D W, Voldeng H D. Crop physiology & metabolism:Photoperiod and temperature responses in early-maturing,near-isogenic soybean lines[J]. Crop Science, 2001, 41:721-727. doi: 10.2135/cropsci2001. 413721x.
doi: 10.2135/cropsci2001. 413721x
URL
|
[41] |
刘易科. 大豆光温互作新模型的验证和FT家族基因的克隆[D]. 杨凌: 西北农林科技大学, 2006.
|
|
Liu Y K. Testify a new soybean model of photo-thermal interaction and clone FT family genes[D]. Yangling: Northwest A&F University, 2006.
|
[42] |
孙洪波. 大豆光温互作新模式的验证及PEBP家族基因的克隆和功能分析[D]. 北京: 中国农业科学院, 2008.
|
|
Sun H B. Validation of a new soybean light-temperature interaction model and cloning and functional analysis of PEBP family genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
|
[43] |
Grundy J, Stoker C, Carré I A. Circadian regulation of abiotic stress tolerance in plants[J]. Frontiers in Plant Science, 2015, 6:648. doi: 10.3389/fpls.2015.00648.
doi: 10.3389/fpls.2015.00648
pmid: 26379680
|
[44] |
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals[J]. Annals of Botany, 2014, 114(7):1445-1458. doi: 10.1093/aob/mcu032.
doi: 10.1093/aob/mcu032
pmid: 24651369
|
[45] |
Lister D L, Thaw S, Bower M A, Jones H, Charles M P, Jones G, Smith L M J, Howe C J, Brown T A, Jones M K. Latitudinal variation in a p.hotoperiod response gene in European barley:insight into the dynamics of agricultural spread from Historic specimens[J]. Journal of Archaeological Science, 2009, 36:1092-1098. doi: 10.1016/j. jas.2008.12.012.
doi: 10.1016/j. jas.2008.12.012
URL
|
[46] |
Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds[J]. The Plant Journal, 2000, 21(2):143-155. doi: 10.1046/j.1365-313x.2000.00663.x.
doi: 10.1046/j.1365-313x.2000.00663.x
URL
|
[47] |
doi: 10.3969/j.issn.1007-7146.2013.06.012
|
|
Xiang F, Huang S, Zhao X Y, Liu X M, Zhu Y H. The response of the prr5 mutant to ABA in Arabidopsis thaliana[J]. Acta Laser Biology Sinica, 2013, 22(6):546-550.
|